
Systematic Analysis of Browser History Evidence
Tobias Groß, Richard Dirauf and Felix Freiling

Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)
Department of Computer Science, D-91058 Erlangen, Germany

Email: {tobias.gross,richard.dirauf,felix.freiling}@fau.de

Abstract—Traces of browser usage are an important piece of
digital evidence in many cases. In the literature, it is usually
assumed that the entries in the browser history and the browser
cache reliably indicate which URL was accessed and at which
time this was done. Using the market leaders Google Chrome
and Mozilla Firefox as examples, and comparing our results
with older versions of Internet Explorer, we show that this
exact correspondence between stored URL and real URL on
the one side and the stored timestamp and the real time of the
action is not always true. On the contrary, it is rather common
that browsers record the timestamp of a user action several
seconds after the action really happened. It can even happen
that browsers sometimes record a different domain from the
domain that was actually visited. The basis for our insights was
a large scale experiment using an automatic deployment of virtual
machines, resulting in a dataset of considerable size.

I. INTRODUCTION

Despite the increasing trend towards personal mobile de-
vices, web browsers are still a dominant method for users
to perform communication and access information in the
Internet. Therefore the evidence generated by web browsers
is also important in many criminal investigations. A common
investigative questions is whether a named user actually visited
a certain website at a particular time. Answers to this question
can help to explain motivation (e.g., visiting extremist websites
or downloading propaganda), prove or disprove communica-
tion (e.g., communicating with other users in forums or via
web mail), or to check for alibis (e.g., user activity in time
periods of claimed absence).

The main sources of evidence in web browsers are the
browser history, a common feature to allow forward/backward
navigation to visited websites, and the browser cache, a
software component that stores recent web content for per-
formance reasons. To use this data as evidence, it has to be
(1) extracted from the concrete browser installation in question
and then (2) interpreted correctly to make proper statements.
While much is known on how to extract data from browser
history and cache for common browsers like Mozilla Firefox
and Google Chrome, much less is known on how to reliably
interpret this data.

A. Related Work

Early work on the forensic analysis of web browsers fo-
cussed on Microsoft’s Internet Explorer, for a long time the
dominant browser on the web. For example, both Jones [1]
and Jones and Belani [2] analyzed the structure of Internet
Explorer activity files and developed the tool Pasco to parse

these files. Boyd and Forster [3] focused on parsing the differ-
ent date and time structures in these files. The interpretation
of this data is rather straightforward. For example, Jones and
Belani [2] refer to the access timestamp in the browser history
as follows:

“Access Time - The moment in time the user
browsed the website.”

Similarly, Boyd and Forster [3] states that the timestamps in
the activity files

“[. . . ] represent the UTC date and time that the
corresponding URL was last visited using Internet
Explorer.”

Other work continued to focus on the technical side of
evidence collection. For example, for Firefox, Pereira [4]
analyzed history artifacts of version 3 and also proposed a
method to recover deleted entries. Mahaju and Atkison [5] in-
stead, compared different tools for analyzing Firefox browsing
artifacts, and Oh et al. [6, 7] developed a new methodology to
collect and analyze evidence from different browsers and to
integrate all evidence in a single timeline. Sonntag [8] also
developed a tool which can extract and collect data from
Internet Explorer, Chrome and Firefox. While they mention
that the history of Internet Explorer may contain spurious
elements which were not intentionally visited by a user and
that Firefox and Chrome history entries have attributes which
allow to distinguish intentional from unintentional visits, they
do not investigate this systematically. Similar to the early work
on browser forensics, the interpretation of the collected data
is rather plain. For example, Sonntag [8] writes that

“[the] actual sequence of visits is stored in
moz historyvists where for each visit [. . . ] a time-
stamp of the visit [is listed.]”

and Pereira [4] states that
“[since] moz historyvisits table also records the date
and time for each visit [visit date field], it is possible
to determine the complete history access of each
URL.”

More recent work either moved its focus to Google Chrome
[9, 10, 11] or increased the amount of data extracted from
the browser. For example, Horsman [11] showed that video
streams played by Google Chrome are cached in a fragmented
way on persistent storage, but can often be reassembled
resulting in a complete video. Other work investigated artifacts
left by HTML5 web applications within the WebStorage API,
e.g., opened tabs and windows [12, 13]. Finally, several

Systematic Approaches to Digital Forensic Engineering (SADFE) 2020



publications [e.g. 14, 15, 16, 17, 18, 19] addressed the privacy
implications of portable browsers and the provided private
browsing modes. And Joseph et al. [20] showed how to extract
user credentials, visited sites and search strings from volatile
memory (with the possibility of false positives when searching
for URLs).

B. Contributions

Overall, it appears that the main thrust of all the work we
are aware of predominantly concentrates on data extraction and
takes data interpretation for granted. After all, it seems obvious
that if the browser history records the access of URL x with
timestamp t then in fact the browser accessed website x at
real time t. The only circumstances that have been formulated
in the literature and that might question this interpretation is
explicit tampering of browser data, a task that was shown to
be hard [21].

In this paper, we study whether even under normal cir-
cumstances (standard software installation, no tampering) the
browser history data is a reliable and accurate representation
of a user’s browsing behavior. More specifically, we ask the
question to what extent the URL and the timestamp recorded
in the history in fact match reality. Our contributions are as
follows:

• We systematically created browser evidence by visiting
over 50 popular websites multiple times over a long
period of time with Chrome, Firefox, Internet Explorer
7, 8 and 9, resulting in a total amount of 1767 website
visits.

• We evaluated the correlation of the generated data and the
user’s action in terms of temporal correlation, correlation
of URLs and quantity of data entries.

• In doing so, we show that the timestamps extracted from
the browser history actually often deviate from the time
of the user’s action, but that the deviation is usually small
(in the range of seconds). On average 90% of timestamps
are within a 10 second offset.

• We also show that in exceptional cases (only three
websites, and mainly for Internet Explorer) the URL
recorded in the browser history does not match with the
URL of the actually visited website. By correlating the
accessed URL to URLs found in the browser cache, we
even show that 69% of cache entries in our dataset refer to
a completely different domain than the originally visited
URL contained.

Overall, our results show that the interpretation of browser
evidence has to be done with care and that in critical cases
statements regarding this evidence have to be backed by
experiments.

C. Roadmap

This paper is structured as follows: In Section II we describe
our setup for creating browser evidence with Chrome, Firefox
and Internet Explorer. In Section III we analyze the generated
data in history files of all browsers and how the data correlates
with the user action. In Section IV we do the same for all

generated cache data. We discuss how the results can be used
to either support or attack testimony regarding browser history
in legal proceedings in Section V and conclude the paper in
Section VI.

II. BACKGROUND AND METHODOLOGY

A. Investigated Browsers and Their Relevance

To get a broad overview over the evidence generated by
desktop browsers we chose to investigate the market leaders
Google Chrome and Mozilla Firefox. With a mean market
share of 68% for Chrome and 11% for Firefox they were the
most used desktop browsers worldwide in 2018 [22].

Because of its former importance but mainly for historic
reasons, we also used older versions of Microsoft Internet
Explorer. In historic market shares, Internet Explorer version
7 had a mean share of 15%, Internet Explorer version 8 had a
mean share of 27% in 2010 [23]. In 2012 Internet Explorer 9
gained a mean market share of 14% [24]. Table I summarizes
the different system configurations used within our study.

TABLE I
CONFIGURATIONS OF SYSTEMS USED FOR EVIDENCE GENERATION

Name OS Name OS Version Browser Version

Chrome Windows 10 Enterprise 10.0.17763 75.0.3770.100
75.0.3770.142

Firefox Windows 10 Enterprise 10.0.17763 67.0.4
68.0

IE 7 Windows Vista Enterprise 6.0.6002 SP2 7.0.6002.18005
IE 8 Windows 7 Enterprise 6.1.7601 SP1 8.0.7601.17514
IE 9 Windows 7 Enterprise 6.1.7601 SP1 9.0.8112.16421

More specifically, we used the versions of Internet Explorer
7 and 8 that were shipped together with the respective versions
of Windows. In the case of Internet Explorer 9 we decided
to update version 8 with a installer provided by Microsoft,
because we had no Windows version available where Internet
Explorer 9 is preinstalled.

B. Relevant Evidence

Files of particular interest in this work are the browser cache
and history. We want to investigate which data gets created in
these files when a user visits websites with the browsers. For
all Internet Explorer versions we determined the path of the
history and cache files by comparing the system image before
and after the automation (which we explain below).

We identified the browsing data files which get modified or
created during the Internet Explorer usage. They are enumer-
ated in Table II. All these identified files are in the Internet
Explorer History File format which was analyzed by Jones [1]
who also developed the pasco tool which we used to parse the
IE data content in this work. For our further investigation of
the Internet Explorer history traces, only the main history files
are of relevance, because the other history files sometimes get
created but have no entries included in our automation runs.
They are shown in Table II and marked with *. Sometimes
entries are written in the Low history and sometimes in the

Systematic Approaches to Digital Forensic Engineering (SADFE) 2020



TABLE II
IDENTIFIED INTERNET EXPLORER BROWSER DATA FILES

Feeds
Users\<User>\AppData \Local \Microsoft \Feeds Cache\index .datCache

Cookies Users\<User>\AppData\Roaming\Microsoft\Windows\Cookies\index.dat
Users\<User>\AppData\Roaming\Microsoft\Windows\Cookies\Low\index.dat

Cache Users\<User>\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.IE5\index.dat
Users\<User>\AppData\Local\Microsoft\Windows\Temporary Internet Files\Low\Content.IE5\index.dat

History

Users\<User>\AppData\Local\Microsoft\Windows\History\History.IE5\MSHist<dateinfo>\index.dat
Users\<User>\AppData\Local\Microsoft\Windows\History\Low\History.IE5\MSHist<dateinfo>\index.dat
* Users\<User>\AppData\Local\Microsoft\Windows\History\History.IE5\index.dat
* Users\<User>\AppData\Local\Microsoft\Windows\History\Low\History.IE5\index.dat

normal history. We do not know why IE operates like that.
Feeds Cache and Cookies files are out of scope in this work.

We identified the path of Firefox and Chrome browsing data
by visiting about:support or chrome://version in
the respective browser. In our test setup, Firefox stores the data
in Users\<User>\AppData\Roaming\Mozilla\
Firefox\Profiles\<profile>.default and
Chrome in Users\<User>\AppData\Local\
Google\Chrome\User Data\Default. Firefox
uses an SQLite database as history file which is stored
in <profile>\places.sqlite and the cache data
in <profile>\cache2 [25]. In this work we used
FirefoxCache2 parser [26] to parse the content of the cache
files.

Chrome stores the history also as an SQLite database
in the path <profile>\History and the cache data in
<profile>\Cache [27]. We used ChromagnonCache [28]
to parse the Chrome cache files.

In the automation framework (which we explain below)
for Firefox and Chrome we had the chance to define a path
where the browsing data gets stored. To verify that the created
artifacts are the same as if browsing manually, we tested
it for three websites. Afterwards we compared the resulting
artifacts. In the history files, all entries were identical in the
test cases except the timestamps, obviously because the test
were executed at different moments. Also, some history entries
which get created in the automated process by Firefox are
falsely typed as visited by link instead of visited by the address
bar. The respective field in the entry will be discussed later in
this paper.

We cannot systematically compare the cache entry-wise
because the cache is dependent on the content displayed by a
webpage which nowadays is highly dynamic and differs from
visit to visit. Overall it seems that the cache behaves the same
in manual and automated session and we have no reason to
assume that the cache is treated different when the browser is
used by the automation framework.

C. Experimental Setup

1) Chrome and Firefox: For Chrome and Firefox the setup
differs from the Internet explorer setup. We use Open Nebula
to define our systems for evidence generation and QEMU as

underlying hypervisor and deployed a dedicated system for
Chrome and Firefox. Such a system consists of Windows
10 which we installed on a QCOW image v3, a respective
browser and the software for automation. The virtual machine
is defined with the libvirt domain1 format and has 2 CPUs,
4GB RAM and 50 GB disk storage. On the system we
installed either Firefox or Chrome in the version shown in
Table I. During our automation runs the browsers updated
automatically to the versions listed in the table, too.

We chose to use a python module called Splinter [29] to
automate Firefox and Chrome. This python module provides
functions to visit sites or interact with elements on the sites,
e.g. clicking a link. Splinter relies on Selenium [30] and
special drivers as a bridge to interact with Chrome and
Firefox. We used geckodriver v0.24.0 [31] for Firefox and
chromedriver v74.0.3729.6 [32] for Chrome.

Since Splinter/Selenium deletes the complete temporary
user profile (e.g. History, Cache etc.) after the automation by
default, we had to alter this behavior. For Chrome we had the
chance to define a custom directory for the user profile, which
doesn’t get deleted after the automation process. For Firefox
we modified the Splinter code which handles the automation
of Firefox. We removed the code which creates an instance
of Selenium’s FirefoxProfile class and added an profile
argument to the geckodriver call instead. This modification
allows to preserve the user profile after the automation process.

2) Internet Explorer: For each of the investigated Internet
Explorer versions (see Table I) we created a disk image (a
bundle of OS and browser) that we used as virtual machines to
systematically generate browser evidence. We used VirtualBox
as virtualization environment and stored OS/browser bundles
as a pair of files: the system was stored in open virtualization
format (OVF) [33] and the disk as virtual machine disk
(VMDK) [34]. Additionally, the VirtualBox Guest Additions
were installed on all systems to allow more control of the VM
guest.

The setup of these systems was conducted with VirtualBox
5.2.8, where the Windows installation disks were mounted
from images. After the setup, browser data like Temporary
Internet files and website files, Cookies and website data,

1https://libvirt.org/formatdomain.html

Systematic Approaches to Digital Forensic Engineering (SADFE) 2020



History, Download History, Form data, Passwords and Track-
ing Protection data was cleared with the function Browsing
history→Delete... in the option menu. In the case of Internet
Explorer 9 system image, we installed the update, before
clearing the history.

We generate our evidence by using the AutoIt framework
[35] to implement a browser automation executable. The
executable takes 2 arguments defining the site to open and
the link which will be followed. The automation opens a
site by pressing <ctrl + o> then typing the sites URL and
pressing <return>. The link clicking action is implemented as
searching for the link text in the UI object pool and performing
a left mouse click on the found object.

D. Evidence Generation

1) Chrome and Firefox: The following list describes the
steps performed for Chrome and Firefox to generate the
browser data which we want to evaluate. This process is
also shown in Figure 1. We repeated these steps 10 times in
different points in time during June 27th and July 16th, 2019.

Host System

Guest System

Open
Browser

Visit
Site

Click
Link

Close
Browser

For every Website



Copy Browser
Data

Fig. 1. Chrome/Firefox evidence generation process.

• Open browser via Splinter with custom user data path
which has no data from previous sessions.

• Open website via visit function of Splinter and wait
two minutes.

• Click link on the site which leads to another site on the
same domain. The specific links get identified with the
Splinter function find_by_text and the link element
get clicked with the click function of Splinter. Wait
four minutes after the action.

• After all 50 websites are processed, copy browser data
from automation system to the evaluation system.

2) Internet Explorer: To study the evidence generated by
executing a particular action within a browser, we set up
the VM image under consideration within VirtualBox and
repeatedly performed the following four steps, which are also
shown in Figure 2:

• Boot system: The host system boots the guest system in
headless mode meaning that no graphic output gets dis-
played. For debugging, a remote desktop connection can
be used. The boot process is monitored by the VM host
with the VirtualBox Python API. The trace generation
continues only when the system booted completely.

Host System

Guest System

Boot Copy .exe Run .exe

Automation

Finish Shutdown

 
Base VM Image

Perform browser actions
Modified VM Image

Extract files

Fig. 2. Internet Explorer evidence generation process.

• Perform browser actions: We copied the appropriate Au-
toIT executable into the guest system with the Python API
and the guest additions. The VM host starts the executable
using the Python API and provides two parameters: The
URL entered into the browser bar and the name of a
link which gets clicked afterwards. Between starting the
browser, opening a website, clicking a link and closing
the browser the AutoIt program waits five minutes, to
give the browser the chance to complete each step.
The automation logs the point in time when the action
(opening a site, clicking a link) took place as a ground
truth. Also, a screenshot is produced after every action,
that we can later check the success of a run. At the end
the browser gets closed and the AutoIt program quits.

• Shutdown system: The VM host gets notified when the
AutoIt process quits. Then a shutdown command gets sent
to the VM. The system then performs a clean shutdown.
The host monitors the system state of the guest system
again with the Python API and the trace generation
process continues only after the shutdown.

• Extract files: We used a modified version of fiwalk
[36] to extract the history and cache files, screenshots
and the ground truth from the VM image. Additionally,
we created an idifference2 log, which lists every file
system transformation (adding, deleting, modifying files
or metadata) compared to the original image.

During execution the automation program writes a ground
truth, to log when the actions open website and click link
happened in time. Also, a screenshot is created after each
action to verify the success of the automation, later.

E. The Resulting Dataset

To generate the browsing data for our analysis we choose
to visit the top 50 global sites of Alexa [38] on January 16th,
2018. With the Internet Explorer setups we encountered two
issues. First, the old Internet Explorer versions where not able
to render many of the modern websites. Second, our chosen
automation solution for IE where not able to click links with
non-ASCII characters. We choose to additionally visit the top

2idifference is a small tool included in The Sleuth Kit [37]. It outputs the
difference between two filesystem images.

Systematic Approaches to Digital Forensic Engineering (SADFE) 2020



TABLE III
VISITED WEBSITES BY CHROME (C), FIREFOX (F), INTERNET EXPLORER 7 (7), INTERNET EXPLORER 8 (8) AND INTERNET EXPLORER 9 (9)

URL Clicked Link IE 7 IE 8 IE 9 Chrome Firefox

http://google.com Werbeprogramme (C,F), Unternehmensangebote (7,8,9) 8 7 7 10 10
http://youtube.com Trending - - - 10 10
http://facebook.com Create a Page - - - 8 10
http://baidu.com 新闻 - - - 8 10
http://wikipedia.org English 13 - - 10 10

http://reddit.com Learn More - - - 10 -
http://yahoo.com OK - Stars (C,F), Nachrichten (7,8,9) 14 - - 10 10
http://google.co.in Werbeprogramme - - - 10 10
http://qq.com 图片 - - - 10 8
http://amazon.com Departments (C,F), Sell (8) - 14 - 10 10

http://taobao.com 免费注册 - - - 10 10
http://tmall.com 请登录 - - - 10 10
http://twitter.com About (C,F), Anmelden (9) - - 14 10 10
http://vk.com Forgot your password? - - - 10 10
http://instagram.com Terms - - - 10 10

http://live.com Create free account (C,F), Weitere (7), Konto erstellen (8) 13 14 - 10 10
http://google.co.jp Werbeprogramme - - - 10 10
http://sohu.com 专题 - - - 10 10
http://sina.com.cn English - - - 10 9
http://jd.com 秒杀 - - - 10 10

http://weibo.com 媒体 - - - 10 10
http://360.cn 电脑软件 - - - 10 10
http://google.de Werbeprogramme - - - 10 10
http://google.co.uk Werbeprogramme - - - 10 10
http://google.com.br Werbeprogramme - - - 10 10

http://list.tmall.com 请登录 - - - 10 10
http://google.fr Werbeprogramme - - - 10 10
http://google.ru Werbeprogramme - - - 10 10
http://netflix.com TRY 30 DAYS FREE (C,F), Einloggen (9) - - 14 10 10
http://yandex.ru Картинки - - - 10 10

http://google.it Werbeprogramme - - - 10 10
http://google.com.hk Werbeprogramme - - - 10 10
http://t.co Learn more (C,F), API (8) - 11 - 10 10
http://pornhub.com Categories - - - 10 10
http://twitch.tv Browse - - - 10 10

http://linkedin.com Cookie Policy - - - 10 10
http://google.es Werbeprogramme - - - 10 10
http://xvideos.com Parents read this to protect your kids. - - - 6 6
http://alipay.com International Business - - - 9 10
http://ebay.com Electronics - - - 10 10

http://yahoo.co.jp トラベル - - - 10 10
http://google.ca Werbeprogramme - - - 10 10
http://bing.com Maps - - - 10 10
http://google.com.mx Werbeprogramme - - - 10 10
http://imgur.com I accept - Sign in - - - 10 10

http://ok.ru Registration - - - 10 10
http://microsoft.com Windows (7,9,C,F), Weitere (8) 14 13 14 10 10
http://imdb.com Movies (C,F), Help (7,9) 6 - 14 10 10
http://wikia.com Accept Advertising Cookies - Games (C,F), TV (7) 8 - - - 10
http://aliexpress.com x - Flash Deals - - - 10 10

Systematic Approaches to Digital Forensic Engineering (SADFE) 2020



TABLE IV
WEBSITES VISITED ONLY WITH INTERNET EXPLORER

URL Clicked Link IE 7 IE 8 IE 9

http://office.com Anmelden (7), Support (8,9) - 14 -
http://craigslist.org AGBnew - - 14
http://diply.com Humor (7,8), About (9) 14 14 14
http://espn.com Sports - 12 15
http://tumblr.com Nutzungsbedingungen (7,8), Datenschutz (9) - - 13

http://cnn.com Edge 14 - -
http://chase.com CDs (7,8), ATM (9) 10 14 9
http://pinterest.com verwendet 11 10 14
http://nytimes.com World 12 12 14
http://paypal.com Konto 14 14 14

http://apple.com Mac 14 14 14
http://yelp.com Events 14 - 14
http://intuit.com Products 14 14 14
http://stackoverflow.com Questions 14 14 14
http://blogspot.com Anmelden (7,9), Blog (8) 14 14 14

http://washingtonpost.com Regional 14 14 12
http://walmart.com Find 14 14 -
http://zillow.com Rental - 13 14
http://msn.com Nachrichten (7), Anmelden (8,9) 14 14 14

50 sites of United States on February 9th, 2018 with the IE
setups.

In total we based our analysis on 1767 successful visits
whereas we define a visit successful when the initial open of
a site and the link clicking action was performed correctly,
what we checked with the created screenshots. For every
combination of website and browser we tried to visit the site
multiple times, to get more reliable data in the end. With
Chrome we visited 50 different sites in 481 runs. With Firefox
we also visited 50 different sites in 483 runs. With Internet
Explorer 7 we visited 21 sites in 263 runs. With Internet
Explorer 8 we visited 20 sites in 260 runs. And with Internet
Explorer 9 we visited 21 sites in 280 runs.

Table III lists all websites of the global top 50 and the num-
ber of visits we performed per browser. Column Clicked Link
states the link text which was clicked during the automation.
The link can be different for some browsers. The abbreviation
in brackets states which link was clicked by which browser.
Additionally, Table IV lists all sites which we only visited
with the IE setups to compensate the few successful visits of
the global top 50.

III. ENTRIES IN BROWSER HISTORY

In this section we study which entries get written to a
browser history when the user performs the actions browsing
a site using the address bar (action open) and clicking a link
on website (action click).

A. Firefox

For Firefox, all analyzed history entries are stored in the
SQLite database places.sqlite. This database not only
contains a history of all visited sites, but also bookmarks
for example. We took the data for analyzing from the ta-
bles moz places and moz historyvisits. Thereby, we define
a history entry of Firefox as the result of the inner join of

both tables by the attributes place id and moz places.id. We
choose to investigate the semantics of these attributes: url,
visit count, hidden, from visit, visit date and visit type. For
further analysis we interpreted visit count as the amount of
entries, e.g. with a visit count of 2 we counted this entry as
two entries.

For every run we counted how many entries get written
per action. To distinguish entries created by the action open
and click, we used the timestamp of an entry and the ground
truth which logged the point in time when the action was
performed. All entries with a visit date before the execution
time of click are assigned to the open action and to click vice
versa. As shown in Table V, if we do not further consider the
attributes of an entry, more than one entry is created per action
in most cases. We calculated the values by counting the entries
for every action and sorted the results. The percentiles state
the entry count in different places in that sorted list. The 50th
percentile is equal to the median value. 5th and 95th percentile
gives an upper and lower bound. If only visible entries are
considered, we get only one entry for one action for at least
95% of all runs in the dataset. When counting only entries
which do not reference a previous visit (from visit equals 0),
we get no entry for many click actions.

When evaluating the visit type fields of the generated en-
tries, we found that only one entry per action was generated
with a visit type of 1 which means TRANSITION LINK [39].
As exception, the link clicking action on twitter and the
open action on Baidu generated two entries this type. In all
our automated generated test data, the entries generated by
the open action get a visit type of 1 instead of 2 (TRAN-
SITION TYPED). We think this result from the automation
framework. In our manual created verification dataset, the
entries of an open action have the expected type of 2. In
conclusion, the users browsing behavior is mapped best, when

Systematic Approaches to Digital Forensic Engineering (SADFE) 2020



TABLE V
NUMBER OF CREATED ENTRIES IN HISTORY FOR ACTION open AND click FOR DIFFERENT PERCENTILES.

Browser Open Click
5th 25th 50th 75th 95th 5th 25th 50th 75th 95th

Internet Explorer 7 0.1 1 1 1 2 0 1 1 1 2
Internet Explorer 8 1 1 1 1 2 0 1 1 1 2
Internet Explorer 9 1 1 1 1 2 0 1 1 1 2

Chrome 2 2 3 3 4 1 1 2 2 3.6
Chrome (from visit==0) 1 1 1 1 2 0 0 1 1 1.6

Firefox 2 2 3 3 3.6 1 1 1 2 2.6
Firefox (visible==1) 1 1 1 1 1 1 1 1 1 1
Firefox (from visit==0) 1 1 1 1 1 0 0 0 1 1

0 2 4 6 8 10 12 14 16 18 20 22
0

0.25

0.5

0.75

1

∆t to event in s

pr
ob

ab
ili

ty

Chrome open
Chrome click
Firefox open
Firefox click

Internet Explorer 7 open
Internet Explorer 7 click

Fig. 3. Time delta from performed action to timestamp in history entry for Chrome and Firefox. (Internet Explorer 7 as reference)

only considering entries that are marked as visible and have
either a visit type of 1 or 2.

When we consider all history entries of the dataset regard-
less of the attributes hidden or from visit, all entries’ URL
relate to the domain of the visited website. Only the dataset
of wikia.com contains entries with the domain fandom.com
because the Wikia site redirects the browser to this page.

The time difference between the timestamp of the entries
compared to the logged time of the action are visualized in
Figure 3. Overall, all entries related to open have a bigger delta
than the click entries. It seems that the entries of the history
are dated after the browser finished loading the website. For
the click action the loading is faster because of cached content.
90% of entries created by an open action have a time delta
smaller than 5 seconds. 90% of entries created by click have
a time delta smaller than 1.5 seconds.

B. Chrome

For Chrome, all analyzed history entries are stored in the
SQLite database History. This database not only contains a
history of all visited sites, but also the history of downloaded

items for example. The data we want to analyze is stored in
the tables urls and visits. Thereby, we define a history entry
of Chrome as the result of the inner join of both tables by
the attributes visits.url and urls.id. We choose to investigate
the semantics of the attributes urls.url, visit count, hidden,
visit time, from visit and transition. For further analysis we
interpreted visit count as the amount of entries, e.g. with a
visit count of 2 we counted this entry as two entries.

For every run we count how many entries get written per
action, the same way as we explained for Firefox. As shown
in Table V, if we do not further consider the attributes of an
entry, more than one entry is created per action in most cases.
When counting only entries which do not reference a previous
visit (from visit equals 0), we get only one entry for most open
action, but no entry for many click actions.

The transition field encodes different values in one
field which can be looked up in the chromium source
code [40]. In our test dataset, every open action
generated exactly one entry in the Chrome history
with the attributes PAGE TRANSITION TYPED and
PAGE TRANSITION CHAIN START. For every click action

Systematic Approaches to Digital Forensic Engineering (SADFE) 2020



one entry with the attributes PAGE TRANSITION LINK
(or PAGE TRANSITION FORM SUBMIT) and
PAGE TRANSITION CHAIN START. The link click action
on Facebook generated no entry with these attributes. Some
other websites generated more than one entry with these
attributes.

In conclusion, there is no ideal filter option based on
attributes for entries, which will map the users browsing
behavior best. When only looking for sites opened by the
address bar, it is best to apply the filter from visit equals 0 or
filter by the transition attribute. To reconstruct link clicking
actions the best filtering option will be the transition attribute,
but in the case of Facebook we would not reconstruct the users
click event.

When we consider all history entries of the dataset regard-
less of their attributes, all entries’ URL are related to the
domain of the visited website.

The time difference between the timestamp of the entries
compared to the logged time of the action are also visualized
in Figure 3. As with Firefox, all entries related to open have
a bigger delta than the click entries. Again, it seems that
the entries of the history are dated after the browser finished
loading the website. For the click action the loading is faster
because of cached content. 90% of entries created by an open
action have a time delta smaller than 4 seconds. 90% of entries
created by click have a time delta smaller than 1.8 seconds.

C. Internet Explorer

In all data from the IE runs we encountered different history
files which get written to disk. But in all runs only the main
histories contain entries which get listed by pasco. An entry in
the MSIE history format can store up to seven attributes, but
when used as main history, in our case only three attributes
are used: type (always set to URL), url, modified time and
access time. In the main history, modified and access time are
always set to an identical value in all our data.

For evaluation, we split up all entries into two groups:
Entries related to the open action and entries related to the
click action. The decision is based on the set timestamp of the
entry and our ground truth which was written during execution.
If an entry has a timestamp after the click action it is assigned
to the click group, to the open group otherwise.

For every run we counted how many entries get written per
action. In most runs IE versions 7, 8 and 9 produces one entry
in the history per action, as can be seen on the 25th, 50th and
75th percentiles in Table V. There exist outliers which can be
seen in the different amount of entries in the 5th and 95th
percentiles. In some runs (some websites) there are up to 2
entries per action and sometimes also no entry for the click
action.

Of importance is also, how the url field of an entry relates to
the opened or clicked URL. In most runs of our dataset, we ob-
served that the history files contain only entries whose domain
is highly correlated with the visited site. We encountered only
three sites which additionally create entries regarding their
domain, meaning that it’s originating domain is not related to

the visited site. For example, for IE versions 8 and 9, msn.com
produced entries of akamaized.net in addition to msn.com
entries. The website tumblr.com produced yahoo.com entries
and wikia.com produced nocookie.net entries, additionally.

Last, we want to investigate how the timestamp of an entry
correlates with the real time an action took place. We compare
the timestamp of every entry in the main histories te with the
timestamp of the action logged in our ground truth tgt by
calculating the delta ∆t = tgt − te. The deltas are shown as
cumulative histogram in Figure 4. We see that all entries have
an offset smaller than 110 seconds, but we also see, that the
offsets are dependent on IE version and performed action. In
general, we observed greater time deltas for IE 9, particularly
for the open action. For these entries, only around 50% have
a time delta smaller than 62 seconds.

IV. ENTRIES IN BROWSER CACHE

In this section we evaluate, to what extent the browser’s
cache describes a user’s browser usage. We show that a
browser’s cache did not map the browser usage as good as
the history relating to the amount of entries, the URLs and
the timestamps.

To receive the entries, we have to preprocess the cache
data of Firefox and Chrome different to their histories. For
all Internet Explorer versions we also use pasco to get the
entries from the cache files and we use the same attributes as
described in the IE history analysis.

We use the attributes Fetch Count, Last Fetch, Last Modified
and URL which the Firefox cache parser outputs for every
entry in the cache files. For the Chrome cache the attributes
Usage Counter, Reuse Counter, Creation Time and URL get
extracted with the designated parser.

In our evaluation we see, that the amount of created cache
entries varies tremendously between different visited websites
and also the time of visit becomes important. For example,
in the evaluation of the Chrome cache data, the amount of
cache entries varies between the different runs for 92% of all
websites. We see the dependence of the cache from the visited
website in another example: One visit of vk.com generates 3
entries and one visit of sohu.com generates 567 entries. These
findings meet the expectations, that the cache of a browser is
highly dependent on an websites content and applies also for
the cache of the Internet Explorer and Firefox.

Which URLs are present in the cache entries after an action
and if they correlate with the opened website is also of interest.
For evaluation we set up four qualitative descending categories
to rate how a listed URL correlates with the URL of the clicked
link or the opened website:

• Exact Match: The URLs match exactly. An added trail-
ing slash is allowed.

• Indirect Match: Added www in front of the host part is
allowed. Also, a change in the protocol part is allowed
(e.g. http to https) and an added trailing slash.

• Domain Match: The first and second level domain
matches between the entered URL during the action and
the URL reference in the cache.

Systematic Approaches to Digital Forensic Engineering (SADFE) 2020



0 10 20 30 40 50 60 70 80 90 100 110
0

0.25

0.5

0.75

1

∆t to event in s

pr
ob

ab
ili

ty

Internet Explorer 7 open
Internet Explorer 7 click
Internet Explorer 8 open
Internet Explorer 8 click
Internet Explorer 9 open
Internet Explorer 9 click

Fig. 4. Time delta from performed action to timestamp in history entry for Internet Explorer.

TABLE VI
AMOUNT OF MATCHING ITEMS IN CACHE ACCORDING TO OPENED LINK EXPRESSED BY DIFFERENT PERCENTILES.

Browser Exact Match Indirect Match Domain Match No Match
25th 50th 75th 25th 50th 75th 25th 50th 75th 25th 50th 75th

Internet Explorer 7 0% 0% 1% 0% 0% 0% 5% 12% 63% 35% 86% 94%
Internet Explorer 8 0% 0% 1% 0% 0% 0% 0% 10% 64% 31% 87% 97%
Internet Explorer 9 0% 1% 1% 0% 0% 0% 0% 5% 65% 30% 92% 97%
Chrome 0% 1% 3% 0% 0% 1% 9% 28% 35% 58% 69% 87%
Firefox 1% 2% 4% 0% 0% 2% 10% 31% 41% 50% 67% 87%

• No Match: All cache entries that match non previous
category.

For every run in our dataset, we calculated the normalized
amount of entries in each category. The result is shown in
Table VI, where the amounts are listed for every browser and
URL match category. The mean value (50th percentile) gives
a good overview over the whole dataset. We also provide the
25th and 75th percentiles to show the spread of the amounts
for different websites. Overall, exact and indirect match are
rare and domain and no match dominate. If we look at the
mean values of Chrome and Firefox, around two thirds of
URLs do not correlate with the visited website. At least, one
third of entry URLs correlate with their first and second level
domain. Only around one tenth of entries are in the category
domain match and around nine tenth do not match at all. When
looking on all cache entries over the complete dataset, arround
69% of entries are in the “no match” category.

At last we evaluate how the timestamps present in cache
entries correlate with the point in time when the user action
was performed. As with the history evaluation we took the
timestamp of a cache entry and calculated the delta to the
action’s timestamp.

Our method to assign entries to one of the user actions
(open and click) relies on clustering entries by timestamps

and assign all entries of one cluster to one action. For IE
this method failed, because we get no 2 distinct clusters as
expected. Therefore, we could not choose the right timestamp
from the ground truth and get wrong results for the Internet
Explorer versions.

The results for Chrome and Firefox are visualized in Fig-
ure 5 as a cumulative histogram. For Chrome, 90% of the open
entries have a time delta smaller than 30 seconds and 90% of
the click entries smaller than 10 seconds. For Firefox, 90% of
the open entries have a time delta smaller than 42 seconds and
90% of the click entries smaller than 11 seconds. In general,
cache entries which gets created during the initial loading of
a page (action open) have a bigger time delta than entries
produced during the second loading (action click). Compared
to the time deltas of history entries, the time deltas of cache
entries are bigger.

V. DISCUSSION

The above results can be used to scrutinize the reliability of
browser evidence under normal circumstances, i.e., standard
software installations, synchronized system time and no tam-
pering [21]. Overall we experienced cases when visiting a site
x at time t a history entry recorded site y (with a different
domain than x) at time t + ε (a different time than t). This

Systematic Approaches to Digital Forensic Engineering (SADFE) 2020



0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
0

0.25

0.5

0.75

1

∆t to event in s

pr
ob

ab
ili

ty

Chrome open
Chrome click
Firefox open
Firefox click

Fig. 5. Time delta from performed action to timestamp in cache entry for Chrome and Firefox.

may appear as if any claim by the investigator can be easily
denied by the defendant. But this is not necessarily true. We
now describe three cases in which our results can be used to
support or attack testimony based on browser evidence.

A. Claim: “I did not visit site x at time t.”

The first case concerns claims that, given a history entry
indicating the visit of site x at time t, the user actually visited
site x at time t. As our results show, this claim is almost
never true, however, the probability that the user visited site x
at a time shortly before t is very high. In fact, in only 3 out of
1767 cases we saw a URL value that was different to the URL
that was entered or clicked on (and these three cases occurred
when using the rather historic Internet Explorer). Moreover,
more than 90% of the recorded timestamps were within a time
window of 10 seconds from the true time at which the action
was taken. So which it is not possible to attribute actions “to
the second”, it is hard to deny that the action was actually
performed within a given time window of less than a minute.

In by far the most cases one entry per user action are created
in the history data of the browsers. But for every investigated
browser we also found additional entries in the history data
in some cases. The Internet Explorer sometimes generated
entries, referencing a favicon (.ico files) in addition to the
entry of the called website, but we had not observed this
behavior with favicons on every website. In rare cases, entries
for other resources were also generated by a website visit. We
could not confirm this behavior for a website visit of our test
website which should provoke this behavior.

For Chrome we also experienced that an additional entry
in history gets created if a redirect from http to https occur.
In the user data of Firefox we also identified the creation of
multiple entries which are not hidden when opening the sites
Baidu and clicking the link About on Twitter.

B. Claim: “I definitely visited site x, oh, and I accidentally
deleted my browser history.”

While the timestamps and URLs present in the browser
history are relatively reliable, evidence stored in the browser
cache is more diverse and cannot be used to confirm the visit
of a website at a particular time. Looking at our data, if we
find a URL x in the cache it is overall less probable that
x was directly visited than the opposite. This is a particularly
tricky situation if a user has coincidentally deleted the browser
history and traces cannot be found through carving.

However, we found that if URL x is visited then entries of
x can definitely be found in the cache. Therefore, URLs that
are not contained in the cache can be used as strong evidence
that they were not visited before.

C. Claim: “This entry was caused by the website itself.”

Within our study we did not test explicitly which data in
history or cache gets generated by particular web technologies
like WebSockets, AJAX, JavaScript or iframes. We believe
that the most popular websites which we visited use most
of the modern web technologies and we would have seen
if particular technologies generate unexpected data in the
history. In general, we did not experienced the generation
of history entries for background communication of websites.
This follows from the fact that for every user action we found
in most cases only one entry in the history and in rare cases
only a few (see Table V). If background communication adds
entries to the history, we would have seen more entries in our
dataset. Also, the distribution of time deltas to the user actions
would look different if continuous background communication
would have added entries in the history. The gradient of the
graphs in figures 3 and 4 would be flatter in that case.

Systematic Approaches to Digital Forensic Engineering (SADFE) 2020



D. Claim: “I used IE 7, your conclusions do not hold.”

During the execution of the Internet Explorer data genera-
tion, we experienced some problems. First of all, it was hard to
create a setup where Internet Explorer 7 runs on a Windows
machine, because it was already released in 2006 and was
totally outdated in 2019. Also, web technologies which are
used nowadays, where not available at the release of the old
Internet Explorer versions 7, 8 and 9 and are not supported
by it. Because of that, we were very restricted in the sites we
visit with the IE browsers and we were not able to generate
a more homogenous dataset. This points to a critical issue
in interpreting browser evidence, in that any measurements
studies like ours are always time dependent, i.e., visiting
modern websites with very old browsers will come to different
conclusions than visiting websites with old browsers back in
the day when they were current.

VI. CONCLUSIONS

Overall, we conclude that the history of all investigated
browsers in many cases corresponds to the user’s browser
usage but not in all. To reconstruct a user’s browsing actions
from the browser’s cache is more complex but can help in
cases where the browsing events from the history have to
be checked for plausibility or in cases where the history was
deleted from the user beforehand. As the problems with old
versions of Internet Explorer show, our experiments can only
give very vague hints on the behavior of the IE versions
we tested. Studies like ours should therefore be repeated in
regular intervals by researchers or forensic institutes to observe
possible developments in data reliability over time.

ACKNOWLEDGMENTS

We wish to thank Benedikt Lorch, Tilo Müller, Janine
Schneider and our shepherd Michael Losavio for helpful com-
ments on earlier versions of this paper. Work was supported by
Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) as part of the Research and Training Group
2475 “Cybercrime and Forensic Computing” (grant number
393541319/GRK2475/1-2019) and the German Federal Min-
istry of Education and Research (BMBF) as part of the FIDI
project.

REFERENCES

[1] K. J. Jones, “Forensic Analysis of Internet Explorer
Activity Files,” Tech. Rep., 2003. [Online]. Available:
http://nys.fd.org/cja/forensics/ieactivity.pdf

[2] K. J. Jones and R. Belani, “Web Browser
Forensics,” 2005, visited on 28.06.2018. [Online].
Available: https://www.symantec.com/connect/articles/
web-browser-forensics-part-1

[3] C. Boyd and P. Forster, “Time and date issues in forensic
computing — a case study,” Digital Investigation, vol. 1,
no. 1, pp. 18–23, feb 2004. [Online]. Available: http://
linkinghub.elsevier.com/retrieve/pii/S1742287604000076

[4] M. T. Pereira, “Forensic analysis of the Firefox 3
Internet history and recovery of deleted SQLite records,”

Digital Investigation, vol. 5, pp. 93–103, 2009. [Online].
Available: http://dx.doi.org/10.1016/j.diin.2009.01.003

[5] S. Mahaju and T. Atkison, “Evaluation of Firefox
Browser Forensics Tools,” in ACM SE ’17 Proceedings
of the SouthEast Conference, 2017, pp. 5–12. [Online].
Available: http://dx.doi.org/10.1145/3077286.3077310

[6] J. Oh, S. Lee, and S. Lee, “Advanced evidence
collection and analysis of web browser activity,”
Digital Investigation, vol. 8, pp. 62–70, 2011. [Online].
Available: http://dx.doi.org/10.1016/j.diin.2011.05.008

[7] J. Oh, N. Son, S. Lee, and K. Lee, “A Study
for Classification of Web Browser Log and Timeline
Visualization,” Information Security Applications, pp.
192–207, 2012. [Online]. Available: https://link.springer.
com/chapter/10.1007/978-3-642-35416-8 14

[8] M. Sonntag, “Automating Web History Analysis,” in
IDIMT Interdisciplinary Information Management Talks,
2012, pp. 313–324.

[9] D. Rathod, “Web Browser Forensics: Google Chrome,”
International Journal of Advanced Research in Computer
Science, vol. 8, no. 7, pp. 896–899, 2017.

[10] N. Shafqat, “Forensic Investigation of User’s Web
Activity on Google Chrome using Open-source Forensic
Tools,” International Journal of Computer Science
and Information Security, vol. 16, no. 9, pp. 123–
132, 2016. [Online]. Available: http://paper.ijcsns.org/
07 book/201609/20160919.pdf

[11] G. Horsman, “Reconstructing streamed video content:
A case study on YouTube and Facebook Live stream
content in the Chrome web browser cache,” in Digital
Forensic Research Workshop, 2018.

[12] S. Matsumoto and K. Sakurai, “Acquisition of Evidence
of Web Storage in HTML5 Web Browsers from
Memory Image,” in 2014 Ninth Asia Joint Conference
on Information Security. IEEE, sep 2014, pp. 148–155.
[Online]. Available: http://ieeexplore.ieee.org/document/
7023253/

[13] S. Matsumoto, Y. Onitsuka, J. Kawamoto, and K. Saku-
rai, “Reconstructing and Visualizing Evidence of Artifact
from Firefox SessionStorage,” in Information security
applications: 15th International workshop, WISA 2014,
2014, pp. 83–94.

[14] G. Aggarwal, E. Bursztein, C. Jackson, and D. Boneh,
“An Analysis of Private Browsing Modes in Modern
Browsers.” in USENIX Security’10 Proceedings of
the 19th USENIX conference on Security, 2010, pp.
1–8. [Online]. Available: http://www.collinjackson.com/
research/private-browsing.pdf

[15] H. Said, N. Al Mutawa, I. Al Awadhi, and M. Guimaraes,
“Forensic analysis of private browsing artifacts,” in 2011
International Conference on Innovations in Information
Technology. IEEE, apr 2011, pp. 197–202. [Online].
Available: http://ieeexplore.ieee.org/document/5893816/

[16] A. Marrington, I. Baggili, T. A. Ismail, and A. A. Kaf,
“Portable web browser forensics: A forensic examination
of the privacy benefits of portable web browsers,” in

Systematic Approaches to Digital Forensic Engineering (SADFE) 2020



2012 International Conference on Computer Systems
and Industrial Informatics. IEEE, dec 2012, pp. 1–6.
[Online]. Available: http://ieeexplore.ieee.org/document/
6454516/

[17] D. J. Ohana and N. Shashidhar, “Do private and portable
web browsers leave incriminating evidence?: a forensic
analysis of residual artifacts from private and portable
web browsing sessions,” EURASIP Journal on Informa-
tion Security, pp. 1–13, 2013.

[18] A. Ghafarian and S. A. H. Seno, “Analysis of Privacy
of Private Browsing Mode through Memory Forensics,”
International Journal of Computer Applications, vol.
132, no. 16, pp. 27–34, 2015.

[19] A. Ghafarian, “Forensics Analysis of Privacy of Portable
Web Browsers,” in ADFSL Conference on Digital Foren-
sics, Security and Law, 2016, pp. 183–194.

[20] N. Joseph, S. Sunny, S. Dija, and K. L. Thomas, “Volatile
Internet Evidence Extraction from Windows Systems,” in
2014 IEEE International Conference on Computational
Intelligence and Computing Research (ICCIC), 2014.

[21] F. C. Freiling and L. Hösch, “Controlled experiments
in digital evidence tampering,” Digital Investigation,
vol. 24, pp. S83–S92, 2018. [Online]. Available:
https://doi.org/10.1016/j.diin.2018.01.011

[22] Desktop Browser Market Share Worldwide Jan -
Dec 2018. Last visited: 2019-12-10. [Online]. Avail-
able: https://gs.statcounter.com/browser-market-share/
desktop/worldwide/2018

[23] Browser Version Market Share Worldwide
Jan - Dec 2010. Last visited: 2019-12-
10. [Online]. Available: https://gs.statcounter.com/
browser-version-market-share/all/worldwide/2010

[24] Browser Version Market Share Worldwide
Jan - Dec 2012. Last visited: 2019-12-
10. [Online]. Available: https://gs.statcounter.com/
browser-version-market-share/all/worldwide/2012

[25] Forensicswiki: Mozilla firefox. Last visited: 2020-01-29.
[Online]. Available: https://forensicswiki.xyz/wiki/index.
php?title=Mozilla Firefox

[26] J. Habben. Firefoxcache2. Last visited: 2020-01-
08. [Online]. Available: https://github.com/JamesHabben/
FirefoxCache2

[27] Forensicswiki: Google chrome. Last visited: 2020-01-29.
[Online]. Available: https://forensicswiki.xyz/wiki/index.
php?title=Google Chrome

[28] J.-R. Bancel and L. Cimon. (2018, Mar.) Chromagnon.
Last visited: 2019-08-30. [Online]. Available: https:
//github.com/JRBANCEL/Chromagnon

[29] (2018) Splinter. Last visited: 2020-01-07. [Online].
Available: https://splinter.readthedocs.io/en/latest/

[30] Selenium. Last visited: 2020-01-07. [Online]. Available:
https://www.seleniumhq.org/

[31] Geckodriver. Last visited: 2020-01-07. [Online].
Available: https://github.com/mozilla/geckodriver

[32] ChromeDriver. Last visited: 2020-01-07. [On-
line]. Available: https://sites.google.com/a/chromium.

org/chromedriver/
[33] “Open Virtualization Format,” visited on 28.06.2018.

[Online]. Available: https://www.dmtf.org/standards/ovf
[34] “Virtual Disk Format 5.0,” visited on 28.06.2018.

[Online]. Available: https://www.vmware.com/support/
developer/vddk/vmdk 50 technote.pdf

[35] AutoIt Scripting Language. Last visited: 2020-01-07.
[Online]. Available: https://www.autoitscript.com/site/
autoit/

[36] S. L. Garfinkel, “Automating disk forensic processing
with sleuthkit, xml and python,” in 2009 Fourth Inter-
national IEEE Workshop on Systematic Approaches to
Digital Forensic Engineering. IEEE, 2009, pp. 73–84.

[37] B. Carrier. The Sleuth Kit. Last visited: 2019-10-04.
[Online]. Available: https://www.sleuthkit.org/sleuthkit/

[38] Alexa - top sites. Last visited: 2020-01-10. [Online].
Available: https://www.alexa.com/topsites

[39] Mozilla firefox 3 history file for-
mat. Last visited: 2020-01-28. [Online].
Available: https://forensicswiki.xyz/wiki/index.php?title=
Mozilla Firefox 3 History File Format

[40] Page transition types source code.
Last visited: 2020-01-28. [Online]. Avail-
able: https://chromium.googlesource.com/chromium/+/
trunk/content/public/common/page transition types.h

Systematic Approaches to Digital Forensic Engineering (SADFE) 2020


