
Forensic Analysis of the Resilient File System (ReFS) Version 3.4

Paul Pradea, Tobias Großa,∗, Andreas Dewaldb,a,∗

aFriedrich-Alexander University Erlangen-Nürnberg, Germany
bERNW Research GmbH, Heidelberg, Germany

Abstract

ReFS is a modern file system that is developed by Microsoft and its internal structures and behavior is not officially
documented. Even so there exist some analysis efforts in deciphering its data structures, some of these findings have
yet become deprecated and cannot be applied to current ReFS versions anymore. In this work, general concepts and
internal structures found in ReFS are examined and documented. Based on the structures and the processes by which
they are modified, approaches to recover (deleted) files from ReFS formatted file systems are shown. We also evaluated
our implementation and the allocation strategy of ReFS with respect to accuracy, runtime and the ability to recover older
file states.

Keywords: Digital forensics, Data recovery, File systems, ReFS

1. Introduction

Storage media analysis is a common task in the field of
digital forensic, when PCs or mobile devices get analyzed.
Investigators have to rely on the proper functioning of their
tools to provide them with correct interpretation of traces.
File systems have to be interpreted and presented when
analyzing storage media, doing this manually is unfeasible.

From this situation emerges the need for digital forensic
tools to ideally support all of the file systems that are cur-
rently in use and may be encountered in a forensic analysis.
Limitations of classical file systems such as low perfor-
mance, limited capacity or unsuitability for SSD drives led
to the development of new filesystems like APFS or ReFS.
These new filesystems have to be supported in open source
forensic tools and documentation. Transparency in forensic
processes and tools is important when digital evidence is
used in severe cases. That is even more important when
filesystems are proprietary as the above-mentioned ones.

With this work, we want to provide the forensic commu-
nity with tools and information to properly analyze ReFS
partitions.

1.1. Related Work

There exists related work that we show in the following
which analyzed ReFS before, but they looked into versions
1.1 and 1.2. Some core concepts still exist in the latest
version 3.4 but also major changes were applied between
these versions, which draws older work incompatible to
newer versions of ReFS.

∗Corresponding author
Email addresses: tobias.gross@cs.fau.de (Tobias Groß),

adewald@ernw.de (Andreas Dewald)

Sinofsky (2012) explains key goals as well as features
like checksums for meta- and content-data as well as the
Copy-On-Write (COW) mechanism that are provided by
ReFS. He also mentions a generic key-value interface which
is used by ReFS to manage on-disk structures.

In a working report, Green (2013) analyzed the internal
structures of ReFS and created an overview of identified
structures. This report skipped how the internal key-value
structure of ReFS works. He also looked into the recovery of
deleted items, but only describes the recycle bin mechanism
of the windows file explorer which is not specific to ReFS.

Another unofficial draft of structures found under ReFS
is provided by Metz (2013). This work strongly focuses on
the low-level presentation of how data structures in ReFS
are composed and was the first to vaguely describe the
key-value store. The author implemented a library which
is based on his findings.

Georges (2018) aimed to develop a tool which outputs
results comparable to EnCase. He also described how the al-
location status of clusters is managed. With the developed
tool, file extraction is possible for ReFS v1.2.

Nordvik et al. (2019) also examined data structures
of ReFS. They mainly focused on v1.2 and v3.2 of ReFS.
At the end they tested their findings on v3.4, too. For
v3.2 they came to the conclusion that the versions did not
differ much from v1.2 and that “the structures are almost
identical”. In our work we come to the conclusion that
between v3.4 and v1.2 many data structures were added,
deprecated or changed. We found also new functionality
like virtual addresses which have to be taken into account
when extracting data from the disk. In contrast to their
work, we discovered more details and also investigate how
the Copy-On-Write mechanism of ReFS is implemented
and propose strategies to recover old versions of files.

Preprint submitted to DFRWS EU December 13, 2019

1.2. Our Contribution

In this work, we analyzed the proprietary Microsoft
Windows Resilient File System (ReFS) version 3.4 and
contribute the following:

• We analyzed the internal structures and mechanics
of ReFS v3.4 and documented them in a technical
report. (Prade et al. (2019))

• We extended The Sleuth Kit from Carrier to support
ReFS.

• We propose strategies for recovering deleted files.
• We implemented a page carver which allows the re-

construction of deleted files and older file states.
• We evaluated the correctness of our implementation

with different ReFS partitions.
• We analyzed the allocation strategy of ReFS v3.4

which affects the recoverability of older file states and
compared the findings with our carver.

2. Background

The Sleuth Kit. The Sleuth Kit (TSK) is an open-source
filesystem forensic tool. It was developed with high porta-
bility and extensibility in mind (Altheide and Carvey, 2011,
p. 42). The highly extensible design of TSK allows devel-
opers to extend its functionality as well as the types of file
systems it supports. TSK is structured into multiple layers
of abstraction that map how data is stored on storage me-
dia. The File System Layer is of most importance within
this work, as this is the abstraction where file systems such
as FAT, NTFS and also ReFS are settled.

Copy-On-Write. Copy-On-Write (COW) is an update pol-
icy that may be used to alter data on a storage medium. A
COW update policy makes sure that data is never updated
in place. Whenever the content of a block should be altered,
the block is read into memory, modified and its content
is written to an alternate location on the storage medium.
When the system crashes while a block is updated through
a COW policy, the old state of the data remains untouched
and still persists. COW offers a simple strategy to enforce
atomicity in write operations and to ensure the integrity
of data structures (Rodeh et al., 2013, p. 15).

3. ReFS Internal Structure

We analyzed the structure of ReFS and classified ident-
fied structures into the categories File System, Content,
File Name, Metadata and Application introduced by Car-
rier (2005). Detailed structure description of ReFS which
are important for forensic analyses can be found in our tech-
nical report (Prade et al. (2019)). In this work we describe
only the structures important for enumerating and recov-
ering files and folders. The ordering corresponds to the
occurrence when starting interpreting an ReFS partition
at the boot sector.

Table Identifier Table Name

0x2 Object ID Table
0x21 Medium Allocator Table
0x20 Container Allocator Table
0x1 Schema Table
0x3 Parent Child Table
0x4 Object ID Table, duplicate
0x5 Block Reference Count Table
0xb Container Table
0xc Container Table, duplicate
0x6 Schema Table, duplicate
0xe Container Index Table
0xf Integrity State Table
0x22 Small Allocator Table

Table 1: Tables referenced by the checkpoint structure

3.1. Checkpoint

ReFS partitions have 2 checkpoint structures which are
written alternately, to have at least one valid checkpoint
in case of a crash. The checkpoint of a file system is the
first structure that holds the current clock values, which
indicates the latest checkpoint structure. Additionally, the
checkpoint also contains the current log sequence number
(LSN) which identifies the last entry that was written into
the redo log. Since ReFS stores changes to the file system
in the memory and writes them at a later point as a batch,
the system may crash in this time window. A system crash
reverts the system to its last valid state and would discard
all changes executed in the meantime. However, every
transaction that was successfully performed and is part
of the batch is also written to a sequential log file that is
discussed in our report. To know from where to start with
the redo operations, it is essential to save an identifier for
the last transaction that was part of the current checkpoint.

The most important structures found in the checkpoint
are the table references. For the sake of thoroughness,
table 1 presents an overview of all tables referenced by the
checkpoint along with their table identifiers.

3.2. Container Table

Internally a ReFS volume is separated into multiple
equally sized bands or containers. The size of a single
band is relatively large at around 64 MiB or 256 MiB.
The Container Table provides detailed information on that
managed memory regions. It tracks how many clusters
within a band are used and additionally collects statistics
about the usage of data and access times within that band.
Tipton (2015) argues that the introduction of Container
Tables was important to treat multi-tiered storage systems
more efficiently. In a multi-tiered storage system, it is
common to have different types of storage media that offer
different reading and writing characteristics. Some storage
media such as flash memory allow performing random

2

access faster than traditional hard disks, which are more
suitable to perform sequential operations.

In a multi-tiered storage system, data needs to be reor-
ganized according to its characteristics. To perform this
reorganization, it is possible to swap bands, and thus their
contents between different storage tiers. The additional
tracking of metadata information within a band allows to
monitor its heat, so to say how often data in it is accessed.
This performance metric may be used to decide when to
shuffle two bands.

This concept as it is described by Tipton (2015) and
Das (2017) can be found in current ReFS versions. It is
important to note that shuffling two different bands also
changes the respective physical addresses of the data found
in the bands. Before such a shuffle operation it would be
necessary to adjust all pointers that reference data in the
affected bands. To prevent the necessity of updating any
pointers, ReFS v2 started implementing virtual addresses
as a mechanism to leverage shuffle operations within con-
tainers. Nearly all addresses used under ReFS have to
be translated into real addresses before they may be used.
After two containers were shuffled, it is only necessary to
update their respective address mappings.

The Superblock, the Checkpoint, the Container Table,
and the Container Allocator Table all use real addresses
that do not need to be translated first, because they are
needed to bootstrap address translation. We did not exam-
ine the inner structure of the rows of the Container Table
in more detail. As of now, only two fields in these rows are
known to us. One of these fields is required to perform the
address translation process.

Figure 1 portrays the practical usage of the Container
Table in the address translation process. Every virtual ad-
dress used under ReFS may be separated into a container-
and an offset- component. The container component deter-
mines which row of the Container Table needs to be queried
to perform an address translation. The offset component
provides an offset that must be added to the translated
address.

3.3. Object ID Table

When conducting a forensic analysis of a ReFS for-
matted file system, the table of most importance is the
so-called Object ID Table. This table references the root
nodes of a variety of other tables and associates an iden-
tifier to them. Alongside a table that contains general
information about the volume, a table storing an Upcase
Table and a table containing an entry point to the redo log,
the Object ID Table also references the root nodes of all
Directory Tables. When searching for any directory, the
Object ID Table must be queried. After a directory has
been deleted, it is not referenced by the Object ID Table
anymore. The Object ID Table is the only place where the
actual addresses of Directory Tables are stored. Because of
these circumstances, recovery techniques that attempt to
restore directories under ReFS should focus on recovering
rows found in the Object ID Table.

The Object ID Table additionally stores meta-information
about the tables that it references. It stores the addresses
and the checksums of the tables it references, as well as
their last persisted log sequence number in the file sys-
tem journal. Additionally, entries in the Object ID Table
may also store a buffer with variable data. For links to
Directory Tables, this buffer is filled with the next file
identifier/metadata address to be used in the directory.

The root Directory Table is stored with the ID 0x600.
Any other regular Directory Table get an ID assigned which
is greater then 0x700.

As the Object ID Table takes a superior role to the
tables which it references, more importance is attached to
guarantee its integrity. A so-called Duplicate Object ID
Table exists which contains the same entries as well as the
same slack space as the regular Object ID Table. While
Copy-On-Write is used to leverage atomic write operations,
duplicate table structures seem to be used to battle bit rot.
If one variant of the Object ID Table becomes corrupted,
the ReFS driver may fall back to using the other variant
of it.

3.4. Directory Tables

Directory Tables implement the logic of directories.
Every Directory Table contains a single row that stores
metadata of the directory that the table represents. We
refer to this row as the directory descriptor. The other
rows found in a Directory Table mostly represent directory
entries that are contained in the directory. There exist two
different types of directory entries: file entry and directory
link entry. A directory link mainly maps a name to a
directory ID, which can be lookup in the Object ID Table.
For all files in a Directory Table, an additional entry type
exists, called ID2 that provides a mapping between the
metadata address of a file and its current handle.

Metadata addresses are used to uniquely address files
and directories. They offer a shorter notation than the
path of a file. A metadata address in ReFS consists of
two components, the directory ID and the file ID which
get concatenated to a 128-Bit metadata address. The
directory ID part identifies the Directory Table and the
file ID the entry in this table. The directory identifier of
a directory is equal to its table identifier. A table with
the id 0x800 represents the directory with the metadata
address 0x800|0. The files inside this directory are referred
to as 0x800|i, where i > 0 and i < max file id0x800. This
choice of addressing files induces a tight coupling between
metadata addresses and the actual paths in which files
reside.

If a file is moved from one directory to another directory
its metadata address is altered as a new directory identifier,
and a new file identifier are assigned to it. However, it
is still possible to refer to the file by its original file- and
directory-identifier. The original identifiers are still saved
in a field of the metadata entry of the file. Additionally,
an ID2 row in its original Directory Table gets created.
This row is used to offer a mapping between the original-

3

Logical Cluster Number
Container:Offset

Container Offset

Container Table

Real Cluster Number
Container / (Container Size * 2)

Key
Index of a container

Value
Start LCN of the container

0x3 ...
0x2 ...

...
n

...

...

+

Figure 1: Exemplary address translation process

and the current-metadata address of the file. This measure
allows metadata addresses of files to be stable even if a file
is moved into a new directory.

There exist two special Directory Tables. The root
directory (ID 0x600) and the File System Metadata di-
rectory (ID 0x520) which fulfills the similar purpose as the
$Extend directory known from NTFS.

To locate an entry by its metadata address, one has to
search the Directory Table in the Object ID Table with
the directory ID part. After that, one has to locate the
ID2 entry with the file ID, which links to the file entry.

3.5. File Table

Root nodes of File Tables are embedded within Direc-
tory Tables. Like all other tables, they start with a fixed-
sized chunk of data that is used to describe table-specific
information. The entries stored in a File Table are the
properties that a file possesses. This concept strongly re-
minds of attributes that are used in NTFS. In this manner,
MFT entries that are known from NTFS expose a similar
behavior as file-descriptor-tables in ReFS. Both consist of
a small fixed component as well as a variable-sized list of
attributes.

We found the following attributes to be practically
used by the ReFS driver: $DIR_LINK, $INDEX_ROOT, $DATA,
$NAMED_DATA, and $REPARSE_POINT. Most of the infor-
mation that was previously stored in the $STANDARD_

INFORMATION attribute of NTFS has now become a part
of the fixed data found in file descriptors. Since the
form in which contents of a directory are represented
was utterly changed and shifted into the responsibility
of rows in Directory Tables, both the $INDEX_ROOT and the
$INDEX_ALLOCATION attribute known from NTFS seem to
have become obsolete. Still, we found all directories to use
equally filled dummy $INDEX_ROOT attributes.

Aside from the $DATA attribute, the contents of all
attributes under ReFS seem to be stored resident, meaning
in place. In NTFS it was possible for the $DATA attribute
to either be stored resident or non-resident. In ReFS, the
$DATA attribute now seems always to be stored non-resident.
Even if a file is only a few bytes large, ReFS allocates an own

cluster for it and saves its data non-resident. Furthermore,
the $DATA attribute seems to be the only attribute that
spans an embedded tree, which stores rows of cluster runs.
This approach also makes it easy to search for an offset
relative in the file as the tree used to store data runs is
collated by the relative start of a data run.

4. ReFS Data Recovery

In ReFS, most data are organized in key-value stores,
so called tables. Internally, these tables are implemented as
a B+-tree. Microsoft calls their implementation Minstore
B+.

When data gets written in ReFS, the updates are not
performed in-place, instead a COW strategy is used. In
the B+-tree, the payload is always held in the leaf nodes.
When data gets altered in this table structures, a new leaf
node is created which takes over the old data and applies
the modifications. Afterwards the pointer in the parent
node has to be adjusted, which is also done with the COW
strategy. This process bubbles up to the root node. This
principle is shown in figure 2 where pointer adjustments
bubbles up and create a new root node, by inserting 19
into the leaf node.

When an entry is removed from a node of the B+-tree,
the entry is not wiped. Instead, only a link to a data
chunk is removed and the data chunk is released. Figure 3
shows a node with deleted entries e1, e2 and e4. They stay
untouched, only the key indexes are made invalid. On the
right-hand side the entry e5 gets inserted which overwrites
big parts of e2. Every time a entry is inserted or deleted,
the key index gets reordered.

We experienced that this non-referenced data is also
copied by the COW strategy. We call this slack space
propagation and verified this in an experiment where we
filled slack space of a leaf node with markers. During usage
of the filesystem (FS), these markers get propagated to
new copies of this node, when data is written in a COW
manner.

We can use the concept of non-referenced data in nodes
as well as old non-referenced nodes to recover data in ReFS

4

1 4 10

1 2 5 6 7 10 11

(a)

btr1 4 10

1 2 5 6 7

1 4 10

10 11 1910 11

(b)

Figure 2: (a) A basic b-tree (b) Inserting key 19, and creating a path of modified pages (based on Rodeh et al. (2013)).

e1 e2e3 e1 e3 e2Data Area

Key Index

e5e4 e4

Figure 3: Data organization in leaf nodes

partitions. For recovering entries from nodes, we have to
scan the entire data area for indicators. An entry starts
with a header which we can check for plausibility.

As a second method, we can search the entire partition
for tree node pages. Every node and even every page in
ReFS start with a specific header. This header offers a
great opportunity for identifying and locating all nodes in
ReFS.

5. Implementation

5.1. TSK Extension

With the knowledge we gained through analyzing ReFS
we implemented an extension for TSK to support inter-
preting ReFS. ReFS shares the same DOS partition type
as exFAT and NTFS, so we modified the mmls tool which
analyses partition tables to output ”ReFS” additional to
exFat and NTFS as the output of filesystem names.

The other implementations focus on the file system
layer. TSK uses a list of filesystem openers which can be
used to try opening filesystems without knowing the type
beforehand. The opener returns a context object which
stores basic information about an filesystem such as block
size, first/last block of the FS and first/last metadata ad-
dresses. Additionally, it provides the TSK API as function
pointers which allows to interact with the FS in a generic
way.

Our opener implementation first parses and checks (with
included signatures and checksums) the boot sector by
reading the first sector of the FS. Additionally, we get the
cluster and sector size from the boot sector.

After identifying a valid ReFS boot sector, we parse
the superblock which resides in cluster 30 as well as the
superblock backups at the end of the FS and pick the first
valid one. We check the superblock with its self-checksum.

From the superblock we get the volume signature and the
cluster addresses of the checkpoint structures.

Our implementation picks the most recent valid check-
point after parsing both checkpoints. Hitherto we refrain
from combining both checkpoints because it is difficult to
combine these tree structures, although one checkpoint
references older root nodes left-behind through the COW
process. 13 root node references get extracted from the
chosen checkpoint including e.g. Container, Object ID and
Volume Information Tables.

Next the Container Table gets enumerated and address
translation data is extracted which is later used to translate
page references to physical page addresses.

One of the main parts is the enumeration of the Object
ID Table as it references directories among others. It should
not matter whether the regular Object ID Table or its
identical copy, the duplicate Object ID Table is processed
since both should store the same contents and presumably
also contain the same slack space. Many tables referenced
by the Object ID Table represent directories. Because of
that, it is not only important to read all regular entries
found in the Object ID Table but also to recover deleted
ones, which can be identified by signatures in their key.

When recovering links to Directory Tables, it is possible
to find multiple links with the same table identifier. This
behavior mainly occurs as a result of the COW process,
that continually writes the root nodes of tables to new
pages. Duplicate page references that store the same table
identifier as others may reference different root nodes. As
a consequence of that, it is possible for a directory to
be formed by multiple tree structures which store older
states of that folder. An example of this state of affairs
is shown in figure 4. The grey marked rows in the figure
represent rows that were recovered in the Object ID Table.
When combining the keys found in the different restored
tree structures, it is important that all keys must only
be interpreted once. The current state of the table stores
the keys 2, 4, 6, and 9. These are interpreted as regular
entries. The recovered trees must be sorted in descending
order of their recency represented with the virtual allocator
clock. After a tree has been enumerated completely, all
new keys are added to the set of existent keys. Keys that
are not found in the regular referenced tree structure (3,
7) but are located in different tables that were recovered,
are considered to be deleted entries. It is only attempted
to recover deleted entries which reference Directory Tables.
All other table structures referenced by the Object ID Table

5

are regularly processed by querying its index.
The TSK tool fsstat outputs general filesystem infor-

mation. It depends on a fsstat function provided from the
context object. We implemented an refs fsstat function
which outputs information from the Volume Information
Table. A brief overview of the other context functions
implementations is given next.

inode lookup. This function is used to get general metadata
for a file or directory specified by the provided metadata
address. Every metadata address under ReFS is formed
by a file identifier and a directory identifier. To find the
location of a file, one must query the directory table which
is identified by the directory identifier. With the file iden-
tifier as a key, the directory table gets queried and the
found directory descriptor- or file table can then be parsed.
The data attribute is non-resident as the data of files in
ReFS resides in external clusters. The implementation
enumerates the data table to receive all data runs. An enu-
meration strategy function attempts to recover data runs
that have been removed from the index. Afterwards, the
data is transformed to the TSK metadata representation.

dir open meta. This function associates the names of files
and folders to their metadata addresses. This function
needs the metadata address of a folder to process. It
populates a directory data structure with mappings of
file names and associated metadata addresses. For this
the whole directory table gets enumerated and the file
and directory links are transformed and inserted into the
directory data structure.

file get sidstr. For our implementation we reused large
parts of the NTFS implementation. For a given metadata
entry it extracts its security identifier (SID) string.

usnjls. ReFS allows for creating an Update Sequence Num-
ber (USN) journal similar to NTFS. The implementation
of this tool can display the content of an USN journal
which is stored as a common file. We extended the NTFS
implementation with a new USN record format present in
ReFS USN journals.

One major drawback in our implementation is, that
TSK supports only 64-bit large metadata addresses to
reference files and directories. ReFS however uses two 64-
bit identifier to refer to a metadata entry. One encodes the
directory table in which the metadata entry resides. The
other is used to address the entry within the directory table.
Therefore, we changed the definition of the TSK INUM T

from uint64 t to a struct that holds a low and a high
64-bit value. This change however makes all application
using TSK incompatible to our implementation and need
to get revised in the future.

Another drawback is, that the COW creates multiple
copies of files which represent their state at different times.
TSK does not cover the idea of multiple copies of a file
with a shared metadata address. Major changes have to
be made in TSK to support this concept in the future.

5.2. Page Carver

Even though many deleted entries may be restored by
analyzing remnants in tree structures, still many nodes of
previously allocated pages remain unseen. The reason for
this is that some nodes are not referenced by any accessible
page anymore and there exists no way to locate them. It is
possible that at an arbitrary position on the disk, important
data is located that belongs to the metadata of a deleted
file or a directory structure. If we, however, have no way
to find this structure, it remains unseen and potentially
substantial evidence is suppressed. The implementations
for the file systems in TSK are purely based on parsing
existing structures and thus react highly responsive. It
would, however, be necessary to scan an entire volume
if all deleted pages have to be recovered. Therefore, a
carver independent of the actual ReFS implementation was
developed.

The carver is based on the tsk img open function pro-
vided by TSK. A user may provide an arbitrary image and
an offset to the carver which then tries to recover deleted
files and directories from the image. The carver works in
two steps.

Collection phase. This is the phase in which the carver
starts. The carver scans the entire provided image for
blocks that look like pages of tree nodes. The step size
of the carver is 4 KiB. In every step, it verifies the page
header within the first 80 bytes of a read block. If these
bytes fulfill the characteristic properties of a page header,
the page is kept for further analysis. If the table identifier
of the page is equal to the table identifier of a container
table or any directory table the page is retained, else it is
discarded.

The carver maintains a structure that maps volume
signatures to an object that represents the state of a ReFS
file system. This structure is used to distinguish differ-
ent instances of ReFS file systems that may exist if the
underlying disk contains multiple ReFS partitions or was
formatted multiple times with the ReFS file system. Within
the state of each volume, a map of directory identifiers is
maintained. This map assigns table identifiers to a list of
pages. When looking up the key of a directory table in
this map the caller may obtain a list of all pages that store
information relevant to this table, so to say all nodes that
once belonged and nodes that still belong to a table with
a given identifier.

The carver also derives further information from pages
that were read. The number of addresses stored in the
page header is used to decide whether the page belongs
to a volume with a cluster size of 4 KiB or 64 KiB. It is
also important for the carver to know at which disk offset
the volume started. At a later time, the application must
interpret cluster runs. For this, it is necessary to know to
which starting address they refer. Figure 6 illustrates this
issue. The red marked file system starts at the beginning of
the disk image. Address references used in this file system
may be interpreted without adding any offsets. The blue

6

0x600

0x600 r2

... ...

0x600 r3

Key Table Reference

r1

Object ID Table

2 4 6 9 2 4 6 7

Clock: 0x2Clock: 0x3

2 4 3 7

Clock: 0x1

Recovered Table ReferencesCurrent Table State

Figure 4: Combining entries of existing and deleted tables that are referenced by the Object ID Table

0x6100b379

...

Volume Signature Directory Information

0x600

0x701

....

Addr: XXX

Addr: YYY

Addr: ZZZ

Volume Offset:
Container Mapping:

Page Size:
Cluster Size:

...

Page Information

Figure 5: Classification process in the collection phase of the
carver

marked file system starts somewhere in the middle of the
disk image. Therefore, its starting offset relative to the
start of the disk image needs to be added to all cluster
references that are interpreted in it. Luckily, the cluster
numbers found in the page header of the Container Table
are equal to their physical addresses. Thus, the first found
page that belongs to a container table may be used to
determine the starting location of a ReFS file system.

The collection process may also be halted at any time.
Whenever the carver has read and classified 256 MiB of
data, it writes its progress state as well as the list of found
pages into a file. When restarting the application at a
later time, the collection process may continue at the last
written state. The idea of this feature as well as lots of other
concepts, were extracted from the refsutil.exe utility.
refsutil.exe was introduced in early 2019 by Microsoft.
It allows to verify or recreate a boot sector, to reclaim
leaked clusters, to remove corrupt files, or to recover files
from a ReFS file system. The recovery operation is also
referred to as salvage. We analyzed the implementation
of this operation to get valuable for recovering files.

Disk Image

ReFS file system #1 ReFS file system #2

Figure 6: Multiple file systems at different locations within a
disk

Reconstruction phase. After all pages have been read and
classified according to figure 5, the carver goes into the
reconstruction phase. The reconstruction phase loops over
all found volume states and performs identical operations
on them. First, the latest state of the Container Table is
restored so that it is possible to translate virtual addresses
in a volume to real addresses. Next, the carver loops over
all directory tables found in a volume.

Metadata reconstruction. Directory tables are stored as a
flat sequence of pages. The carver searches these pages for
signatures that may be used to identify files, directory links
and directory descriptors. When a corresponding signature
is found, the carver executes various sanity checks on the
found data and tries to interpret it as the structure it
believes it to be. The carver must also restore the subtree
formed by directory descriptor tables and file tables to
access their attributes, and their data runs. If the carver
was successful in restoring an entry, the entry is saved in the
class format file information or dirref information.
Every directory stores these entries as a set.

If a file information entry or a dirref information

entry is equal to an already existing entry, it is discarded.
To determine whether two entries are identical, multiple
properties of them are compared. It would not be sufficient
to merely check whether the file identifier already exists
in the set of found entries as this would discard potential
older copies of files. Instead, the file identifier, the last
modification time, and the file size are used in conjunction
to check whether two file entries are equal. If they are not

7

equal, both may be contained in the same result set.

Extraction phase. After all directory pages of a volume
have been analyzed and their entries have been transformed
into the internal representation of files and directories,
the extraction phase begins. First all directory tables
found in the volume are created as folders of the form
<vol_sig>/<dir_id>. Next, a volume report with the
file name <vol_sig>/report.txt is created. The report
describes the properties of the corresponding volume such
as its offset in the disk image, its cluster size and the number
of directories that it contains. The report also describes
the address translation mapping that was extracted from
the container table of the volume.

Next, the application creates a file called <vol_sig>

/structures.txt that is filled with the reconstructed di-
rectory hierarchy formed by the file system. Since the
application stores the extracted directories in a flat form
and only refers to them through their directory identifiers,
this file may be used to re-establish directory structures.
Finally, the application iterates over all directory structures
and dumps the files found in them. Into every directory a
file called <vol_sig>/<dir_id>/directory_report.txt

is written which contains a list of all files found in the direc-
tory. The list also contains the metadata of duplicate files
that may have been created through the Copy-On-Write
mechanism. The contents of all files are finally dumped into
the corresponding directory. To prevent naming conflicts
among restored files that utilize identical file names files are
written as <vol_sig>/<dir_id>/<file_id>_<copy_id>.
Their names however may easily be looked up by exam-
ining the <vol_sig>/structures.txt or the <vol_sig>

/<dir_id>/directory_report.txt file.
As of now, the carver is only able to extract files and

directories of a file system, and contrary to the ReFS im-
plementation in the file system layer of TSK does not show
additional information about a volume. It might be best
to use both of those tools in conjunction. The file system
implementation of TSK provides valuable information such
as attributes of files as well as file system metadata that has
not yet been added to the analysis process of the carver. A
crucial advantage of the implementation in the file system
layer of TSK is that its implementation can decide whether
a file is allocated or has been removed. The carver is not
aware of whether the files that are extracted were allocated
or not. On the other hand, the carver provides a valuable
tool for an investigator that intends to examine a corrupted
ReFS file system or an investigator who wants to obtain
potential older copies of files.

6. Evaluation

As of now, there exists no work that looks at recovering
files and folders from ReFS formatted file systems. Thus
also, no work has yet stated test cases that could be used
to evaluate tools that serve such a purpose. We designed
multiple test scenarios which portrayed a fictive usage of

the file system. The evaluation process of the tools is
strongly based on the description of the evaluation dataset
used by Plum and Dewald (2018). We generated 8 ReFS
images with different configurations of overall size (2GiB,
5GiB, 40GiB, 100GiB) and cluster size (4KiB, 64KiB). On
each we performed 1000 actions from the following list with
different likelihood of occurrence:

• add file P (X) = 0.35: Add a random file from the
EDRM File Formats Data Set 1.01 to the volume

• delete file P (X) = 0.2: Delete a random file
• move file P (X) = 0.05: Moves a random file
• change file P (X) = 0.1: Insert a random amount

of A’s into a random file
• copy file P (X) = 0.1: Copies a random file
• add folder P (X) = 0.15: Creates a randomly named

folder
• delete folder P (X) = 0.05: Removes a randomly

picked folder
If an action could not be executed in a step (e.g. re-

moving a directory, if no directory exists at all), a different
action was picked randomly. This choice of the distribu-
tion was picked deliberately to generate a more “realistic”
reflection of the usage of a filesystem. The distribution of
the actions, however, was an arbitrary guess of the authors
of how often these actions occur.

After every action we documented the outcome in a
modified TSK body file2. Both, the TSK implementation
as well as the carver were adjusted so that they were able
to output the modified body file format to compare results.
The following characteristics were stored in the modified
body file for every file or directory present on the filesystem:
An MD5 checksum of the file content, which is set to 0 for
directories. The name of a file or a directory without its
complete path. The current directory identifier of a file,
for directories their parent identifier is stored. The initial
metadata address of the file or folder, which stays constant,
even if the file gets moved. The MAC timestamps which
track the last modification- access- and the creation- time
of a file. The size of a file.

The python applications that are used to acquire the
ground truth of the state of the file system use the function
os.stat, which was only able to obtain a 64-Bit metadata
address. For our evaluation this was no limitation because
all created metadata addresses were small enough.

The capture of the final state of the file system includes
all existent files and directories, whereas the outcomes of
the single executed operations only log changes made to
files and the creation of directories. Every action that
creates, alters, moves or copies a file generates a log entry
for the modified state of the file. We refrained from logging
the changes in the metadata of directories resulting from file
actions as a deliberate decision in weighting the results. In
practice, it might be of more importance restoring metadata

1https://www.edrm.net/resources/data-sets/edrm-file-format-
data-set/

2https://wiki.sleuthkit.org/index.php?title=Body file

8

Configuration
Interpreted entries

Directories Files

2GiB 4KiB 47/46 (102.17%) 112/110 (101.82%)
2GiB 64KiB 44/43 (102.33%) 83/81 (102.47%)
5GiB 4KiB 45/44 (102.27%) 123/121 (101.65%)
5GiB 64KiB 20/19 (105.26%) 33/31 (106.45%)
40GiB 4KiB 25/24 (104.17%) 78/76 (102.63%)
40GiB 64KiB 56/55 (101.82%) 143/141 (101.42%)
100GiB 4KiB 35/34 (102.94%) 64/62 (103.23%)
100GiB 64KiB 53/52 (101.92%) 110/108 (101.85%)

Table 2: Output of the TSK extension, compared to the final
state of the file system

entries of files than of directories. We did not want to weight
the incapability to restore an old timestamp of a directory
equal to the incapability of restoring the contents of a file.

6.1. TSK Extension

It is expected that the TSK extension can produce a
report equal to the actual state of the file system. We
tested the TSK extension on the 8 generated images and
called the tool fls with the option to only display allocated
files. The resulting output should be equal to the current
state of the file system that Windows reports.

As shown in table 2, for all randomly generated testing
scenarios, the output of the TSK extension matches the
actual state of the file system, except the folder “System
Volume Information” (Table ID: 0x701) and its content
“WPSettings.dat” and “IndexerVolumeGuid”. The numbers
x/y count the number of detected files/folders (x) and the
number of files/folders present on the final state (y). These
entries were not included in the extracted final state of the
file system because Windows hides this folder from regular
users. The same applies to the “File System Metadata”
(Table ID: 0x520) folder, which we omitted proactively in
this output of the TSK, since it is not a regular directory.
The results show that we are able to output the exact
actual ReFS state with our TSK extension.

6.2. File Recovery Capabilities

With this evaluation we want to compare the capabil-
ity of recovering deleted files and reconstructing previous
states of files and folders. We compare the outputs of the
developed tools with the action trace log which was logged
during test image creation.

In the tables referenced in the following, the numbers
x/y have to be interpreted as the number of exact outputted
files/folders (x) and the number of all different file folder
states once present on the filesystem (y). Table 3 compares
the output of the TSK extension only considering allocated
files and folders to all states. Noteworthy, less directories
match than in the evaluation seen in table 2. That is
because we use the action log as comparison instead of
the final filesystem state. In the action trace we only log

Configuration
Interpreted entries

Directories Files

2GiB 4KiB 14/154 (9.09%) 110/613 (17.94%)
2GiB 64KiB 16/159 (10.06%) 81/590 (13.73%)
5GiB 4KiB 11/144 (7.64%) 121/606 (19.97%)
5GiB 64KiB 9/159 (5.66%) 31/585 (5.30%)
40GiB 4KiB 9/129 (6.98%) 76/615 (12.36%)
40GiB 64KiB 7/159 (4.40%) 141/616 (22.89%)
100GiB 4KiB 6/147 (4.08%) 62/592 (10.47%)
100GiB 64KiB 12/152 (7.89%) 108/593 (18.21%)

Table 3: State of all allocated files (TSK extension), compared
to action log

Configuration
Restored entries

Directories Files

2GiB 4KiB 15/154 (9.74%) 132/613 (21.53%)
2GiB 64KiB 19/159 (11.95%) 125/590 (21.19%)
5GiB 4KiB 14/144 (9.72%) 159/606 (26.24%)
5GiB 64KiB 28/159 (17.61%) 75/585 (12.82%)
40GiB 4KiB 12/129 (9.30%) 97/615 (15.77%)
40GiB 64KiB 11/159 (6.92%) 175/616 (28.41%)
100GiB 4KiB 10/147 (6.80%) 113/592 (19.09%)
100GiB 64KiB 13/152 (8.55%) 142/593 (23.95%)

Table 4: State of all allocated and recovered files (TSK exten-
sion), compared to action log

directory creation and no timestamp modifications due
to changes of child files and folders. Therefore, only few
folders outputted by the implemented applications which
got never an update in timestamps match exactly the logged
folders. As expected, the applications output at least all
files present in the final image state.

Table 4 includes the file and directory recovery capabil-
ities of the TSK extension. Compared to table 3 more files
and folders are outputted correctly. As the ReFS extension
can only restore entries from referenced pages, it is likely
that there remain pages that the TSK extension cannot

Configuration
Restored entries

Directories Files

2GiB 4KiB 15/154 (9.74%) 139/613 (22.68%)
2GiB 64KiB 21/159 (13.21%) 133/590 (22.54%)
5GiB 4KiB 16/144 (11.11%) 169/606 (27.89%)
5GiB 64KiB 34/159 (21.38%) 88/585 (15.04%)
40GiB 4KiB 16/129 (12.40%) 102/615 (16.59%)
40GiB 64KiB 11/159 (6.92%) 183/616 (29.71%)
100GiB 4KiB 10/147 (6.80%) 124/592 (20.95%)
100GiB 64KiB 13/152 (8.55%) 150/593 (25.30%)

Table 5: State of all allocated and recovered files (carver),
compared to action log

9

Configuration
TSK TSK

Carver
(alloc. files) (all files)

2GiB 4KiB 1.233 s 1.379 s 20.411 s
2GiB 64KiB 1.21 s 1.947 s 20.519 s
5GiB 4KiB 0.613 s 0.694 s 50.1 s
5GiB 64KiB 0.917 s 1.206 s 50.764 s
40GiB 4KiB 0.972 s 0.94 s 383.027 s
40GiB 64KiB 2.256 s 2.409 s 402.892 s
100GiB 4KiB 1.441 s 1.415 s 997.922 s
100GiB 64KiB 2.037 s 2.344 s 1012.462 s

Table 6: Runtimes of the applications

locate. Additionally, the TSK extension only retrieves the
most recent state of a file and is unable to address and
thus to retrieve past states of a modified file.

Table 5 shows all files that could be recovered by using
the carver. In all scenarios the carver is able to recover more
files and directories than the TSK extension. The major
drawback of the carver is, that it is unable to differentiate
between existing and removed files.

Table 6 conclusively give an overview of the runtimes
of the various test scenarios. To conduct all experiments,
we used a 4 TiB large Western Digital hard drive (Prod-
uct ID: WDBHDW0040BBK). With the application dd

we estimated a sequentially read speed of 95-110 MiB/s.
Depending on the size of a volume, the carver is most of
the time busy with reading and collecting pages from the
volume. The runtime of the TSK extension also varies
strongly based on the number of pages that are read.

6.3. Recovering Old File States

In this evaluation we look at how the COW process
impacts the recovery of old file states. For this experiment
we developed a small application that writes text into a
file in a ReFS file system. The text was artificially written
at the speed at which a person types (175 characters per
minute). Every 2 minutes the text file was saved, and
a checksum of its current intermediate state was logged
together with its metadata.

Because of the COW policy that ReFS uses, it is likely
that metadata, that describes the file and the location
of its clusters, is dispensed into multiple places of the
volume. We used the developed carver to find as many
existent old copies of the file as possible. Additionally, we
instrumented the ReFS driver to log cluster allocation and
COW information, e.g. when data is written from one page
to another. The data generated in this process allowed us
to reconstruct which intermediate states of the file were
generated.

The continuous modification of a single page in the
COW process can be viewed as a chain of page states.
Every page state has a physical address associated to it.
If this physical address is reused at a later time for an
allocation, this state cannot be recovered anymore. All

Duration Save Op.
Recovered Recoverable
States Pages

10 m 5 3 (2 valid) 6 / 15
30 m 15 3 (3 valid) 5 / 31
60 m 30 3 (3 valid) 5 / 47
120 m 60 3 (3 valid) 5 / 86
240 m 120 3 (3 valid) 4 / 141

Table 7: Experiment to analyze the recoverability of COW
copies

older pages in such a page chain that get not reallocated
may still yield valuable contents.

The experiment focused on writing data into a single file.
Additionally, no other modifications on the file system were
made while the file was altered. While this is a lab setup,
it gives an upper boundary for the recovery capability of
old file states on ReFS partitions.

The experiment was conducted with five different data
sets. Each data set was a 5 GiB large ReFS volume with
a cluster size of 4 KiB. For every data set, the text file
was written for a different time period, ranging from 10
minutes to 2 hours.

As seen in table 7, the number of recoverable file states
does not differ much between the various experiments. In
all scenarios, the valid files that could be recovered corre-
sponded to the last 3 states of the file, with the exception
of the shortest run. That outlier occurs because the carver
found an empty version of the new created file. In the
rightmost column of table 7 you can see that even though
various runtimes were used for the experiments, and for
longer running experiments more page states were created,
the number of recoverable pages stays nearly constant. The
right number shows the total amount of allocated pages
during the runtime. It seems like the allocator in the ReFS
driver reused old pages relatively fast.

7. Summary

With this work we investigated the internal structures
of the new Resiliant File System. We used the insights to
extend The Sleuth Kit to be able to parse and interpret
ReFS partitions. Open that we implemented a page carver
to recover file system data. We evaluated both tools and
come to the conclusion that our TSK extension works as
intended and reports the current state of a ReFS partition
equal to the ReFS driver of Windows. We also showed that
with page carving we can recover more data than with only
using deleted entries which are still present on the disk.

Acknowledgements

This work was supported by the German Federal Min-
istry of Education and Research (BMBF) as part of the
FIDI project.

10

References

Altheide, C., Carvey, H., 2011. Digital Forensics with Open Source
Tools. Elsevier.

Carrier, B., . The Sleuth Kit. URL: https://www.sleuthkit.org/
sleuthkit/. last visited: 2019-10-04.

Carrier, B., 2005. File System Forensic Analysis. Addison-Wesley
Professional.

Das, R., 2017. ReFS Support For SMR Drives. Presentation,
SDC 2017. https://www.snia.org/sites/default/files/SDC/

2017/presentations/smr/Das_Rajsekhar_ReFS_Support_For_

Shingled_Magnetic_Recording_Drives.pdf.
Georges, H., 2018. Resilient Filesystem. Master’s thesis. NTNU.

https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2502565.
Green, P., 2013. Resilient File System (ReFS), Analysis of the

File System found on Windows Server 2012. Technical Report.
Staffordshire University.

Metz, J., 2013. Resilient File System (ReFS). URL:
https://github.com/libyal/libfsrefs/blob/master/

documentation/ResilientFileSystem(ReFS).pdf. last visited:
2019-10-04.

Nordvik, R., Georges, H., Toolan, F., Axelsson, S., 2019. Re-
verse engineering of ReFS. Digital Investigation 30, 127 –
147. URL: http://www.sciencedirect.com/science/article/

pii/S1742287619301252, doi:10.1016/j.diin.2019.07.004.
Plum, J., Dewald, A., 2018. Forensic APFS File Recovery, in:

Proceedings of the 13th International Conference on Avail-
ability, Reliability and Security, ACM, New York, NY, USA.
pp. 47:1–47:10. URL: https://dl.acm.org/citation.cfm?id=

3232808, doi:10.1145/3230833.3232808.
Prade, P., Groß, T., Dewald, A., 2019. Forensic Analysis of the

Resilient File System (ReFS) Version 3.4. Technical Report
CS-2019-05. Department Informatik. URL: https://opus4.

kobv.de/opus4-fau/frontdoor/index/index/docId/12526,
doi:10.2.32328085593/issn.2191-5008/CS-2019-05.

Rodeh, O., Bacik, J., Mason, C., 2013. BTRFS: The Linux
B-tree Filesystem. ACM Transactions on Storage (TOS) 9,
9. URL: https://dl.acm.org/citation.cfm?id=2501623, doi:10.
1145/2501620.2501623.

Sinofsky, S., 2012. Building the next genera-
tion file system for Windows: ReFS. URL:
https://blogs.msdn.microsoft.com/b8/2012/01/16/

building-the-next-generation-file-system-for-windows-refs/.
last visited: 2019-10-04.

Tipton, J., 2015. ReFS v2, Cloning, projecting, and moving data.
Presentation, SDC 2015. https://www.snia.org/sites/default/

files/SDC15_presentations/file_sys/JRTipton_ReFS_v2.pdf.

11

https://www.sleuthkit.org/sleuthkit/
https://www.sleuthkit.org/sleuthkit/
https://www.snia.org/sites/default/files/SDC/2017/presentations/smr/Das_Rajsekhar_ReFS_Support_For_Shingled_Magnetic_Recording_Drives.pdf
https://www.snia.org/sites/default/files/SDC/2017/presentations/smr/Das_Rajsekhar_ReFS_Support_For_Shingled_Magnetic_Recording_Drives.pdf
https://www.snia.org/sites/default/files/SDC/2017/presentations/smr/Das_Rajsekhar_ReFS_Support_For_Shingled_Magnetic_Recording_Drives.pdf
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2502565
https://github.com/libyal/libfsrefs/blob/master/documentation/Resilient File System (ReFS).pdf
https://github.com/libyal/libfsrefs/blob/master/documentation/Resilient File System (ReFS).pdf
http://www.sciencedirect.com/science/article/pii/S1742287619301252
http://www.sciencedirect.com/science/article/pii/S1742287619301252
http://dx.doi.org/10.1016/j.diin.2019.07.004
https://dl.acm.org/citation.cfm?id=3232808
https://dl.acm.org/citation.cfm?id=3232808
http://dx.doi.org/10.1145/3230833.3232808
https://opus4.kobv.de/opus4-fau/frontdoor/index/index/docId/12526
https://opus4.kobv.de/opus4-fau/frontdoor/index/index/docId/12526
http://dx.doi.org/10.2.32328085593/issn.2191-5008/CS-2019-05
https://dl.acm.org/citation.cfm?id=2501623
http://dx.doi.org/10.1145/2501620.2501623
http://dx.doi.org/10.1145/2501620.2501623
https://blogs.msdn.microsoft.com/b8/2012/01/16/building-the-next-generation-file-system-for-windows-refs/
https://blogs.msdn.microsoft.com/b8/2012/01/16/building-the-next-generation-file-system-for-windows-refs/
https://www.snia.org/sites/default/files/SDC15_presentations/file_sys/JRTipton_ReFS_v2.pdf
https://www.snia.org/sites/default/files/SDC15_presentations/file_sys/JRTipton_ReFS_v2.pdf

	Introduction
	Related Work
	Our Contribution

	Background
	ReFS Internal Structure
	Checkpoint
	Container Table
	Object ID Table
	Directory Tables
	File Table

	ReFS Data Recovery
	Implementation
	TSK Extension
	Page Carver

	Evaluation
	TSK Extension
	File Recovery Capabilities
	Recovering Old File States

	Summary

