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ABSTRACT
We investigate the amount of information leakage through
unencrypted metadata in Android’s file-based encryption
(FBE) which was introduced as an alternative to the pre-
viously dominating full-disk encryption (FDE) in Android 7.0.
We propose a generic method, and provide appropriate tool-
ing, to reconstruct forensic events on Android smartphones
encrypted with FBE. Based on a dataset of 3903 applications,
we show that metadata of files can be used to reconstruct
the name, version and installation date of all installed apps.
Furthermore, we show that, depending on a specific app,
information leakages through metadata can even be used to
reconstruct a user’s behavior. For the example of WhatsApp,
we show that the point of time a user sent or received her
last message can be traced back even though the phone was
encrypted. Our approach requires access to the raw data
of an encrypted disk only but does not require access to a
powered-on device or the bootloader, such as known attacks
against FDE including cold boot and evil maid. We conclude
that FBE is significantly more insecure than FDE and was
presumably elected for usability reasons like direct boot.
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1 INTRODUCTION
Android is the most widespread OS for smartphones in the
world, with a worldwide market share of 87% at the end
of 2018.1 To protect data on modern smartphones against
physical access, Android 7.0 introduced file-based encryption
(FBE) as an alternative to full-disk encryption (FDE), which
was available since Android 4.0. FBE enables direct boot to
allow encrypted devices to boot straight to the lock screen.
Previously, with FDE users needed to provide credentials
before any data could be accessed, preventing the phone
from performing all but the most basic of operations.2
Despite the gain in usability, we show that FBE is more

insecure than FDE. Our results and methods are of interest
from two points of view. On the one hand, state authori-
ties like police have a legitimate interest to subvert data
encryption for their investigations and crime prevention.
Today, IT systems are not only used in cases of cybercrime
but also in traditional crime. The data on smartphones play
an increasingly important role to give evidence about the
general procedure of crimes. On the other hand, users of
smartphones have a legitimate interest of keeping their sen-
sitive data private and secret against unauthorized access,
including both criminals and illiberal states.

1.1 Our Contribution
To the best of our knowledge, we are the first investigating
the amount of data leakage through unencrypted metadata
in Android’s file-based encryption. Given full access to the
raw disk of an FBE-enabled device, our contributions are:

• Based on the IT forensics toolchain sleuthkit, we pro-
vide a tool to extract the metadata of files from ext4
partitions. Those data include directory layouts, file
sizes, permissions, and creation/modification times.

• Based on the unencrypted metadata we retrieve with
our tool, we propose a method to reconstruct a list of

1https://www.idc.com/promo/smartphone-market-share/os
2https://source.android.com/security/encryption/file-based
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installed apps from a device. Our analysis is based on
a set of fingerprints from 3903 apps.

• For WhatsApp, we exemplarily show how to even re-
construct a user’s behavior from FBE-enabled devices.
This step, however, is highly app-specific and naturally
limited.

Note: During our work, which was based on a Nexus 5X
with Android 8.0, the latest version of Android 9.0 was re-
leased. According to Google, Android 9.0 introduces support
for metadata encryption where hardware support is present.
As a consequence, the flaws we identified are not applicable
on up-to-date Android 9.0 smartphones, proving that Google
was aware about privacy concerns of FBE independent of our
results.

1.2 Related Work
Loftus et al. [6] give an overview of Android’s file-based
encryption and investigate whether known attacks against
full-disk encryption are still applicable. As a result, they state
that some attacks appear still feasible on Android 7.0 and
later. In contrast to the work by Loftus et al. [6], we investi-
gate a new vulnerability of FBE, not present on FDE-enabled
devices, namely, how to extract unencrypted metadata and
exploit it to, e.g., reconstruct usage behavior.
Other works [9–11] evaluate the security of Android’s

FDE and proposed novel methods for hardening FDE. Müller
et al. [8] implemented a tool called FROST to extract the
disk encryption key from a cold booted Android device. In
contrast, Götzfried and Müller [3] implemented a method to
harden Android’s FDE encryption against cold boot attacks.
They also showed the vulnerability of Android to evil maid
attacks. All this work shows the importance of the security
research on disk encryption methods, but until today was
limited to FDE.
Garfinkel [2] developed a tool called fiwalk for extract-

ing filesystem structures and metadata into XML files. We
adapted this concept and implemented our own version of fi-
walk which in addition extracts ext4 specific and FBE related
metadata.
Research about reconstructing usage behavior from a

filesystem’s metadata was performed by the following pa-
pers: James et al. [4] generated signatures for identifying
user actions in Microsoft Internet Explorer, Mozilla Firefox
and Microsoft MSN Messenger. The generated signatures
are based on Windows registry modifications and changes
to the filesystem’s metadata. Kälber et al. [5] have used a
fingerprinting approach for reconstructing user actions in
different Windows apps. As fingerprints they used NTFS
timestamp changes and evaluated their approach on Mozilla
Thunderbird and ICQ. In contrast to the previous work, we

extracted fingerprints from metadata for Android apps and
despite FBE being in place.

2 BACKGROUND
In this section we give necessary background information
about file-based encryption (2.1), app fingerprints (2.2), and
the file and folder structure of Android devices (2.3).

2.1 File Based Encryption
Starting with Android 7.0, users can encrypt the userdata
partition with FBE instead of FDE. Technically Android’s FBE
is implemented as a feature of the ext4 FS. The basic element
in ext4 is an inode, which represents and stores metadata of
a file or folder. Metadata include modify, access, create or
change (MAC) timestamps, ownership information, size and
a generation ID. File and folder names are not stored in an
inode structure and are hence not present unencrypted.

Inodes hold pointers to the content data and to more meta-
data called extended attributes. The extended attributes are
used to store data of filesystem extensions. In the case of FBE
they also manage important data for the encryption. Other
important metadata for our work is the generation ID. Gen-
eration IDs are used on NFS to distinguish new files reusing
an inode from an older, already deleted file. The combination
of an inode and generation ID is unique for the filesystem’s
lifetime.
File and folder names are only part of a folder’s content

data. Figure 1 shows a simplified example of a folder con-
taining a file. The content data of a folder is a list of names
and inode reference. These entries define the name of child
files/folders and link to their inode. This allow to nest folders
and to build up the filesystem structure. With FBE the con-
tent of each file or folder gets encrypted with an individual
per-file-key. Since file names are the content data of the par-
ent folder, all names of files in the same folder get encrypted
with the same key, namely the parent folders per-file-key.

The per-file-key of a file is inherited from a master key.
For this process the extended attributes hold a random nonce
and a key descriptor defining which master key to use. The
per-file-key is the result of the encryption using AES128-
ECB of the nonce with the master key. In our experiments
AES256-XTS is used to encrypt the content data of a file with
the per-file-key. For the folder entries AES256-CBC-CTS is
used with the per-file-key of the folder to encrypt the file
and folder names.

There are two master keys in a single user Android system.
One is used for files which are needed after booting the
device without unlocking to support basic functionality like
emergency calls. These files are called device encrypted (DE).
The DE master key is tied to the physical device. The second
master key is for files which are only usable after unlocking
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the device with the user’s passcode. These files are called
credential encrypted (CE) as their master key is inherited of
the passcode.

2.2 App Fingerprints
To reconstruct user activities on an Android smartphone
even without decrypting the userdata partition, we take the
concept of app fingerprints from Kälber et al. [5] and James
et al. [4]. The idea is that every user interaction with an app
leaves patterns in the filesystem metadata. This is because
apps often need to access data from files like program code
and resources or modify or create new information stored
in files. All file accesses and modifications are reflected in a
file’s MAC timestamp which is part of the metadata. Every
user interaction of an app might touch those timestamps.
For the case of instant messengers like WhatsApp, sending
and receiving text messages or photos likely modifies a local
database. Sending a photo must access the sent media file
and receiving a photo must create a new media file.
Furthermore, we differentiate between ordinary finger-

prints and characteristic fingerprints. Characteristic finger-
prints are changes in the metadata which are only triggered
by one specific action. Ordinary fingerprints are those which
can also emerge from multiple user actions. Characteristic
fingerprints are more valuable than ordinary fingerprints
because they cannot be overlaid when other actions are exe-
cuted after the action with characteristic fingerprints. This
allows for reconstructing the event with characteristic fin-
gerprints regardless other events happened afterwards.

2.3 Files and Folder Structure
Android apps, in contrast to desktop apps on Windows or
Linux, are strictly sandboxed, meaning that apps are re-
stricted to their own folders when modifying, accessing or
creating files. The userdata partition is typically mounted
at /data, holding all third-party apps. We distinguish be-
tween static and dynamic app data. Static app data con-
sists of program code, libraries and resources like graph-
ics and sounds. The static app data is stored in a folder lo-
cated under /data/app at install or update time and never
gets changed afterwards. Dynamic app data can change af-
ter install time. There are several places where dynamic
app data is stored, including /data/misc/profiles/{cur,
ref}/appName, /data/ user_de and /data/data/appName.
For our work only /data/app is used for installation event
reconstruction and /data/data for user action reconstruc-
tion.

3 ATTACKER MODEL
We assume an “attacker” (who can impersonate both sides,
criminals and legitimate authorities) having physical access

to an Android 7.0 or 8.0 device with FBE-enabled. This at-
tacker is able to access the raw data of the encrypted disk,
either through chip-off data recovery or logical access due
to exploits or unlocked bootloaders. Modern smartphones
like the Nexus 5X uses eMMC flash memory as persistent
disk memory. Etemadieh et al. [1] showed that it is possible
to dump the data from an unsoldered eMMC chip with rela-
tively little effort. Even for NAND chips, which can also be
used as persistent memory, there exist methods for dumping
data from the chip [7].

4 IMPLEMENTATION
For our implementation we used a Nexus 5X device with
Android 8.0.0 installed. We implemented our own version of
fiwalk [2], which outputs all files and folders to a file in the
DFXML3 format. Our version of fiwalk also includes the ext4
specific metadata generation ID and FBE related metadata
like nonce, master key descriptor and cipher.

4.1 Installation Event Reconstruction
To reconstruct installation events, we built a database of app
fingerprints. We identified the location of an app’s static files
which do not change in size or content after installation and
used these files to fingerprint apps. The static data of an
app is structured as pictured in figure 2. On the root level
of an app’s folder is the base.apk. This file is an archive
for the whole app data. Subfolders of the lib folder store
native libraries used by the app. These libraries get extracted
from the base.apk at install time. So as time of installation
we just take the creation timestamp of the base.apk. After
installing this file, all native libraries get extracted and last,
the app code gets compiled.
The Android runtime (ART) compiles program code of

an app to machine code, typically known as ahead-of-time
(AOT) compilation and stores it in files located inside child
folders of oat. File sizes and content may differ little from one
installation to another. Therefore, we cannot use these files
for fingerprints. Instead, we used the file sizes of base.apk
and native libraries, as these files are static in size even on
different devices. To identify apps, our fiwalk module iterates
over all apps in /data/app and tries to match the file sizes
with a fingerprint inside the database. To exclude AOT files
from matching without file and folder names, we exclude
them based on the file count of a folder and the cr-times
of files. In the oat folder are always two or three files, see
figure 2, while in the lib folder an arbitrary number of files
is stored.

3https://github.com/dfxml-working-group/dfxml_schema
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Figure 1: Simplified file and folder organization in ext4 filesystem

!

"

" "

/data/app/{app_name}

base.apk

" "

lib oat

xyz.so
…

base.odex
base.vdex
base.art

Figure 2: Layout of static app data

4.2 Dynamic Data Folder Identification
Our linking tool identifies all app-related folders despite the
app folder at /data/app which is identified by the first mod-
ule and only stores static data. To reconstruct user actions in
apps we need dynamic data which gets identified by this tool.
The linking tool takes the userdata partition file/folder struc-
ture, metadata and the inode of the app folder in /data/app
and outputs the inodes of other app-related folders created
during app installation. We investigated the installation pro-
cess of an app and identified the following folders, in which
app related folders get created during installation: /data/
data, /data/user_de, /data/misc/profiles/cur/0 and

/data/misc/profiles/ref. But in the end we used the be-
havior of generation IDs to identify all these app-related
folders, as described in the following.

The first generation ID ready for allocation is chosen ran-
domly at each device boot. When creating a new file, this
file gets the initial generation ID and then the generation ID
is incremented. The following applies for two installed apps
a and b, where b was installed after a:

∀a ∈ A,b ∈ B : G(a) < G(b)

where G(x) is the generation ID of a folder x and the set
A consists of app-related child folders directly under /data/
app, /data/data, /data/user_de, /data/misc/profiles/
cur/0 and /data/misc/profiles/ref. Analogous, the set
B consists of folders for an app b.
So we can identify the set A of all app-related folders of

app a by knowing the folder in /data/app checking the
following condition:

A = {x ∈ F | G(x) > G(z) ∧G(x) < G(z) + ϵ}

where F is the set of all subfolders of /data/data, /data/
user_de, /data/misc/profiles/cur/0 and /data/misc/
profiles/ref and z the app related subfolder in /data/app.

4.3 User Action Reconstruction
To reconstruct user actions in apps we have to create a data-
base with characteristic fingerprints for each of the targeted
actions. The database creation can be done offline and once-
only. For simplicity, the generation should be performed on
a device with folder and filenames in cleartext and access
to the whole filesystem. This is the case at devices with no

4



Analyzing Android’s File-Based Encryption ARES ’19, August 26–29, 2019, Canterbury, United Kingdom

Extract FS
Metadata

Prepare
System

Perform
Action

Figure 3: Fingerprint generation process

disk encryption enabled and raw storage device access, e.g.,
through an unlocked bootloader or rooted device.

The process of fingerprint generation is shown in figure 3.
In the prepare system phase, the apps we want to generate
fingerprints for get installed and set ready to use. To extract
the metadata, we reboot the device into the bootloader and
boot a TWRP recovery image to dump the complete metadata
and file structure in the extract filesystem metadata phase.
At the end of each cycle, we boot into the Android system
and perform the action we want to identify characteristic
fingerprints.

To find only changes in the metadata which are related to
the chosen action, we have to perform each cycle multiple
times to segregate noise from background processes and
system tasks. The changes in the filesystem occurred during
an app’s installation are extracted by comparing the dumps
of cycle n with n+1with the idifference4 tool which returns a
list of new, changed, modified and deleted files. Fingerprints
related to the app action are those which occurred in nearly
all cycles.

After identifying fingerprints for different actions, we can
calculate the characteristic fingerprints of all actions. Charac-
teristic are all those metadata changes which only occurred
for one action. These characteristic fingerprints have more
significance because they are not triggered by other actions.

The general process of matching fingerprints operates as
follows. We extract the metadata of the target device and
then divide the files into timeframes by their MAC-times.
This provides us with a list of modified, accessed and created
files for each timeframe. Last, we can match each timeframe
with the fingerprint database. We get a hit if all characteristic
traces of an action are contained in a timeframe and we can
reconstruct the action to be happened at the timeframe.
The part of matching an exhibit’s userdata partition to

reconstruct user actions is highly dependent on the app and
the identified fingerprints. The fingerprints use file and folder
names to clearly identify which file’s and folder’s metadata
change by executing an action.

4https://www.forensicswiki.org/wiki/Fiwalk

5 EVALUATION
In this section we evaluate our method for installation event
reconstruction and adapt our concepts of user action recon-
struction to WhatsApp.

5.1 Installation Event Reconstruction
For evaluating our installation event reconstruction approach,
we used a Google Play Store crawler for half a year. Regu-
larly, we downloaded the top 20 of free apps for every store
category. For all apps once downloaded we checked for new
versions and also downloaded these. At the end we had 1326
different popular apps and 850 of them in at least two dif-
ferent versions. In total we used 3903 different APKs for our
installation event reconstruction evaluation.
In the first part of our evaluation we built a database of

app fingerprints with these 3903 different APKs. We utilized
a rooted Nexus 5X device and installed the APKs with only
one version of an app at a time. Afterwards we extracted the
file sizes of base.apk and all libraries to store them in our
database.
We checked the uniqueness of the fingerprint for each

specific app version. In our test set we encountered no two
different apps with the same fingerprint. We encountered
only 26 apps having the same fingerprint for different app
versions. In conclusion this means for the reconstruction
process that it is extremely unlikely that an installation event
for a wrong app gets reconstructed. Only the reconstruction
of the exact app version remains uncertain.

In the second part we run tests on our reconstruction tool.
In total we randomly selected 132 apps from our pool and
installed them on a test device. Among the selected apps
are also some of them which have no unique fingerprint
for different versions. For all installed apps we identified
the correct app name and installation time in the region of
seconds. Also, the correct app version gets reconstructed, for
those with no unique fingerprint all matching versions get
suggested.

5.2 WhatsApp User Action Reconstruction
Last we conducted a case study to show that we can recon-
struct user actions in WhatsApp using unencrypted meta-
data only. This case study consists of multiple steps. First,
we investigated which fingerprints are left behind on the
metadata for different user actions. Afterwards, we selected
fingerprints which originate in files which we can identify
on an FBE-enabled device using structural information. Last,
we conducted some tests to show that we can match those
fingerprints on our FBE test device and reconstruct user
actions in WhatsApp.

In the first step we run the fingerprint generation process,
presented in section 4.3 for the following user actions:

5
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• send message to an existing conversation (CSM)
• send photo to existing conversation (CSP)
• send message (new conversation) (NM)
• send photo (new conversation) (NP)
• receive message and open conversation (RM)
• receive photo and open conversation (RP)
• open WA and close in task manager (OC)
• receive photo without opening WA (PNP)
• receive message without opening WA (PNM)

We performed the generation process ten times for every
user action to track files which change timestamps during
user action or get created. Afterwards we seek for charac-
teristic fingerprints of investigated actions. We could not
identify characteristic fingerprints in our set of user actions
for WhatsApp. In the next step we selected fingerprints with
files we can locate on an FBE-enabled device with no file
and folder names. In our fingerprints we discovered that for
every action, WhatsApp’s databases get updated timestamps.
After the installation, the WhatsApp folder in /data/

data/ is empty except the two symbolic links cache and
code_cache. On the first start of WhatsApp six folders are
created in the specific order: app_minidumps, app_traces,
databases, files, no_backup and shared_prefs. AllWhat-
sApp databases get created in the databases folder. On the
first start, eight database files get created, each time in the
exact same order. After the registration of WhatsApp, 19
database files are present, all in the same order each time
WhatsApp is used. More databases are created on demand
when specific WhatsApp features are used by the user, like
opening the emoji list for the first time or receiving me-
dia files for the first time. Interesting for our case, when a
text message is received the first time web_session.db and
web_session.db-journal are created. This creation can happen
at the same time as media databases are created. Then web
session files get created first.
We cluster our unknown database files by creation time

and generation ID and by knowing the creation patterns we
can identify each database file. The optional databases can
be identified by the different number per cluster. There we
distinguish the case when web session databases get created
together with media databases and the case when these files
get created separately. In the first case they build a cluster
with five files and in the second case one cluster with three
and one cluster with two files. We evaluated our WhatsApp
specific approach for user event reconstruction together with
the linking tool mentioned in section 4.2 and our app fin-
gerprint database. For the following event reconstruction,
we limit to two combined user actions, because we cannot
differentiate more user actions only using database files. We
match for send/receive text event which changes only mtime

of axolotl.db and send/receive photo event which changes
mtime in axolotl.db and media.db.

We tested the reconstruction with ten runs per action com-
bination for these ten different action combinations: CSM -
CSP, CSP - CSM, RM - CSM, RM - CSP, RP - CSM, RP - CSP, FP
- CSM, PNP, PNM and NM.We were able to identify the static
WhatsApp data with our app fingerprint database for all 100
runs. Furthermore, the linking tool identifiedWA’s /data/data
folder correctly and our WhatsApp specific database iden-
tification approach was able to find the required databases
in all runs. For all runs we reconstructed send/receive photo
event if the last action was CSP and PNP as expected. If
these actions were performed before the last action, we could
only match the fingerprints for send/receive photo partly.
If those partly matched fingerprints are characteristic for
send/receive photo, then we are also able to reconstruct the
event with certainty.

6 SUMMARY
Summarizing, we investigated the amount of information
leakage on Android FBE-enabled devices through metadata
left unencrypted. In digital forensics, our insights could be
used by state authorities to reconstruct a list of installed apps
and user behavior in apps, not only limited toWhatsApp. Ap-
parently, Google was aware of these security shortcomings
and introduced metadata encryption in Android 9.0.
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